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This section contains shorter technical papers. These shorter papers will be subjected to the same review process as that for full papers.

The Effect of Space_Dependent cially, Luikov [7] point out that analytical solutions are generally

possible only for restrictive cases, such as one-dimensional con-

Thermal Conductivity on the Steady ductivity variation or conductivity constant in zones. For one-

dimensional cases, transformation of the space coordinasaw
Central Temperature of a = [dx/k(x) is a useful simplification. In physical terms, it gives
Cyllnder the thermal resistance in thedirection. Grigoriu[8] proposed a

floating-random-walk Monte Carlo method based on properties of
Brownian motion and [tgorocesses that is claimed to be appli-
Louis C. Burmeister cable to space-dependent conductivity, but without examples.
e-mail: kume@mecheng.me.ukans.edu Following a suggestion of Bellmdi6], Munoz and Burmeister

Mem. ASME Department of Mechanical Engineering,  [9] utilized the substitutiory=k*T to find that the steady heat

; ; diffusion equation is transformed int§?y=Fy in which F
University of Kansas, Lawrence, KS 66045 . . . b
y =k Y2y2k¥2 Then, analytical solutions can be obtaine i a

convenient function. This substitution was advanced by Clements

and Budhi [10] who incorporated a Kirchoff transformation
A transformation is presented that enables the center temperaty®arslaw and Jaeg¢i1]) to obtain a boundary element method
of a cylinder to be expressed in terms of an integral of the peripfor numerical solution of a class of problems in which thermal
eral temperature distribution for heat conduction with spaceconductivity is dependent upon space and temperature. Munoz
dependent thermal conductivity. Its predictions agree with exaghd Burmeistef9] explored the use of their results for a Monte
answers and with numerical solutions obtained with finite diffeicarlo numerical procedure. They found that wiieis a function
ence methods for four test cases. The new result can be applie@t@adiusr alone in cylindrical coordinates, the center temperature
a two-dimensional floating random-walk Monte Carlo procedurg,, of a cylinder of radiuR is related to the peripheral temperature
which previously was restricted to the case of constant thernmal(¢) and thermal conductivitks( ) at angular locatiord as
conductivity. [DOI: 10.1115/1.1418701

2m _ _ 27

Te= j TR(OKYA(6)d6/kY? with kY= f k¥ 6)d6/2m
Keywords: Conduction, Cylinder, Heat Transfer, Monte Carlo, 0 0
Space (1)

The relationship in Eq(1) between the center and peripheral
temperatures, although correct for the stated condition, lacks gen-
Introduction erality. For example, the common case of thermal conductivity
arying stepwise as in a layered anisotropic material violates the

. . A . . ondition thatF be continuous and depend only upon radius. In
requires solution of the heat diffusion equation. This can be doﬂ?e following, another relationship will be derived and its predic-

either with boundary conditions s_pecmed or to determine theﬂbns will be compared with those obtained by other means.
from measured temperatures at internal locations, the latter as

done by Ganesa-Pillai and Haji-Sheikh]. Complex geometries
and boundary conditions often necessitate numerical methods_of .

solution whether or not thermal conductivity is constant. Thg%rmulatlon

boundary elementBrebbia[2]) and floating random-walk Monte  The steady heat diffusion equation in cylindrical coordinates is
Carlo numerical methodg$Haji-Sheikh and Sparrow3]) are

Accurate prediction of the temperature distribution in a sollg

among those that utilize information obtained from exact relation- a( Kkr ﬂ a( kﬂ)

ships. For these methods to be accurate when thermal conductivity 1 1 a6

varies with position, it is desirable that relationships for that case T o T2 a0 =0. @
be found.

The same mathematical problem is encountered in related Hitegration of Eq(2) with respect tof from 0 to 27 gives

eas. In Turner's[4,5] two-dimensional applications of Monte oT

Carlo techniques to prediction of unsteady piezometric potential = ¢ fé”kr—da)

in a water well, it was observed that variation of hydraulic trans- — or 4 1 k(2) ‘9T(2”)7k(0) JT(0) -0
missibility with location ought to be taken into account. r ar r? a6 a6 '

While many analytical solutions are known if thermal conduce
tivity k is constant, few are known when it is space dependent.
their surveys of possibilities for that case, Bellni&h and, espe-

ince conditions at the beginning and end of an angular traverse
e the same, it follows that

2 aT
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qrde=[-k 8T(r,0)/or] r d6 1 1 1
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This finite difference expression suggests the continuous
equivalent

2m 1 2m 1

ch —dd0= fo TR(e)RTdO,
fOk ) fO k(r ’ i 19)

which is consistent with Eq(6). If interior control volumes are
used between the central and the peripheral control volumes, a

Fig. 1 Conductive heat flux g across a differential element of similar but more complex expression is obtained that contains
area rd @ on the periphery of a cylinder additional, small terms that represent heat flow in the angular
direction.
The first demonstration of the predictive ability of the formula-
Integration with respect to from 0 tor gives tion in Eq. (6) is for the one-dimensional case of a slab of two
or IT(r.0) layers, each of thickneds The temperature distribution is given
f K(r,)r ——d6=0. @3) by
0 dT
Equation(3) represents the physical requirement that the sum of d k&

steady heat flows into and out of a circle be zero as shown in Fig. =0, T(-L)=Ty, T(L)=T_,

1, and the current development could have started with it. dx
Recasting Eq(3) as ko(1+a), x<O
fZWFll dezo ko otherwisé
0 The solution is
motivates the coordinate transformations Ty—(Tu=T)(X/L+1)/(2+4a) %<0
Rodr’ @ T:[TL—(TH—TL)(x/L—1)(1+a)/(2+a) otherwisé
= k(r 0) o k(r', (7)
and The temperatur@, atx=0, the interface between the two layers,
de’ is
f_j TRdr//k(r',6") /f TRdr//k(r’,6) /k(r ) ®) Te=[(1+a)Ty+T )/(2+a). (7b)

With the transformations of Eqé4) and (5), Eq. (3) becomes To compare the prgdic_tion of E(@, it is first recognized that
=r cos() for a cylindrical coordinate system centeredxatO.
LoT(n,f) df=0 Then, the peripheral temperature at a constant radial distance,
" - equal to the layer thickness, from the interface between the two
layers is obtained from Ed7a) to be
Integration with respect to; from O to the outer radius of the
cylinder gives the center temperature in terms of the specified

peripheral temperature as

1
T,= f Trdf. (6)
0

Discussion

The functional form off () in Eq. (5) is consistent with the
previously cited observations by Bellmf#] and Luikov[7]. It is
also consistent with the use by Hameed and Lebddéff of the
space variable transformatian= [dx/k(x) in an application of
the integral method to heat conduction in media in which thermal
conductivity varies one-dimensionally with position. Patankar’s
[13] use of the harmonic mean of thermal conductivity be-
tween nodes in a finite difference numerical method as

2/kef‘h l/k|+l/2+ 1/k| 1/2

is similar. Further support for the functional form 6f6) is ob-
tained from a finite difference formulation to determine the center
temperature of a cylinder of specified peripheral temperature gg. 2 Control volumes for determination of the central tem-
depicted in Fig. 2. Use of only three control volumes around thgerature of a cylinder in terms of the peripheral temperatures
central control volume for simplicity yields by a finite difference method
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Tu—(Tu—TO[1+cog )]/(2+a), w/2<6<3m/2

TR_

T —(Ty—To)(1+a)[cogh)—1]/(2+a) otherwise
For this problem, Eq(5) gives ©
ol[(2+a)w], 0<6<m/2
f=1 [(1+a)d—an/2]/[(2+a)xw], w/2<6<3m/2, (9)
(6+am)l[(2+a)n], 3m2=<0<2w
Use of Egs(8) and(9) in Eqg. (5) gives
2m 1, —7l2< < /2
Te= L TR(B)m[l+a, 7I2< 0<37/2

=[(1+a)Ty+T.]/(2+a),

which is identical to the exact answer in Eb). The earlier
prediction of Eq.(1) is erroneous for this case in whi¢his not
solely a function of radius.

The second case is one for which Eij) is exact. In this case
the thermal conductivity variation ik=[2+ (r/R)cosé}, for
which F=0. Application of Eq.(5) results inf=(26+ sin 6)/4m
which, when used in Eq6) with Tg(6#)=100(2+ cosb), yields

25 2w
T, ?f [4+4cog 0)+cog(9)]do=225.
0

result can be applied to a two-dimensional floating random-walk
Monte Carlo procedure which previously was restricted to the
case of constant thermal conductivity.

Nomenclature

a = constant for conductivity variation, see E{)
f = transformed angular coordinate, see E).
F = conductivity function
k = thermal conductivity
kg = thermal conductivity at radiuR averaged over a circle
L = slab thickness
g = radial conductive heat flu\q=—kdT/ar
r’ = dummy radial coordinate and position
r = radial coordinate and position
R = cylinder radius
T = temperature
X = space coordinate and position

Greek Symbols

n = transformed space coordinate, see &J.
= angular coordinate and position

7 = natural numbergr=3.145 . ..

o = transformed space coordinate

Munoz and Burmeister demonstrated by comparison with a finig-PScripts

difference numerical solution that this is the correct value for thec

at the center

center temperature. eff = effective value
A third case for whichF is not solely a function of radius H = high
has the thermal conductivity uniform in each of two zones asi = index
described by L = low
1, 0.3sr<0.5, Osf=w o = at the center
"5  otherwise R = at radial distanc&
for which Eq.(6) gives
56/14, o=
- References

|

5/14+9(6/w—1)/14 otherwise

With Tg=100(2+ cosé) Eq. (6) then gives the center temperature
as 200, agreeing exactly with the value obtained with a finite

difference numerical method by Mun$z4].

Use in a Monte Carlo Procedure

The result of the present analysis is E8). which can be recast
into the form

27
- |
0

In this form it can be seen that, is the expected value of a series

of experiments for which the probability distribution function for

an outcomeT g( ) within the range & 6#<2 is df/d6. From this

it follows that the cumulative distribution function i 6).
Equation (10) can be used in a two-dimensional floating

random-walk Monte Carlo procedure.

TR(O)[df/d6]d6. (10)

In general, because the thermal conductivity dependence upeRy
location would not be convenient, evaluation of the cumulative

distribution functionf in Eq. (5) would have to be accomplished
numerically.

Conclusion

[1] Ganesa-Pillai, M., and Haiji-Sheikh, A., 1998, “A Critical Evaluation Of the
Monte Carlo Method For Application To The Inverse Heat Conduction Prob-
lem,” Proc. ASME. Heat Transfer Div.-1998, Intl. Mech. Engr. Congr. And
Exp Nov. 15-20, HTD-V. 361-5, pp. 95-107.

[2] Brebbia, C., 1984The Boundary Element Method For EngineePentech
Press Ltd., Estover Road, Plymouth, Devon PL6 7PZ, Great Britain.

[3] Haji-Sheik, A., and Sparrow, E., 1967, “The Solution Of Heat Transfer Prob-
lems by Probability Methods,” ASME J. Heat Transfég, pp. 121-131.

[4] Turner, J., 1978, “An Improved Monte Carlo Procedure For The Solution Of
The Steady-State, Two-Dimensional Diffusion Equation With Application To
Flow Through Porous Media,” M. S. thesis, University of Kansas, Lawrence,
KS.

[5] Turner, J., 1982, “Improved Monte Carlo Procedures For The Unsteady-State
Diffusion Equation Applied To Water Well Fields,” Ph. D. thesis, University of
Kansas, Lawrence, KS.

[6] Bellman, R., 1952Stability Theory Of Differential EquationdcGraw-Hill,

p. 109.
[7] Luikov, A., 1971, “Methods Of Solving The Nonlinear Equations Of
Unsteady-State Heat Conduction,” Heat Transfer-Sov. Regp. 1-51.
[8] Grigoriu, M., 2000, “A Monte Carlo Solution Of Heat Conduction And Pois-
son Equations,” ASME J. Heat Transfdr22 pp. 40—45.
[9] Munoz, A., and Burmeister, L., 1988, “Steady Conduction With Space-
Dependent Conductivity,” ASME J. Heat Transf&d 0, pp. 778—780.
Clements, D., and Budhi, W., 1999, “A Boundary Element Method For The
Solution of a Class of Steady-State Problems for Anisotropic Media,” ASME
J. Heat Transfer]21, pp. 462—465.
[11] Carslaw, H., and Jaeger, J., 198hnduction Of Heat In SolidDxford Uni-
versity Press, p. 89.

[12] Hameed, S., and Lebedeff, S., 1975, “Application Of Integral Method To Heat
Conduction In Nonhomogeneous Media,” ASME J. Heat Trans$ar, pp.
304-305.

A transformati_on has been found that enables th_e center teff3) patankar, S., 1978, “A Numerical Method For Conduction In Composite Ma-
perature of a cylinder to be expressed in terms of an integral of the  terials, Flow in Irregular Geometries and Conjugate Heat Transfergt.

peripheral temperature distribution for heat conduction with
space-dependent thermal conductivity. The predictions of the ne
result agree with exact answers and with numerical solutions ob-
tained with finite difference methods for four test cases. The new

Journal of Heat Transfer

Sixth Int. Heat Transfer ConfToronto, Canada, Vol. 3, Paper No. CO-14, pp.
297-302.

4] Munoz, A., 1984, “Variable Thermal Conductivity And The Monte Carlo
Floating Random Walk,” Master of Science thesis, University of Kansas,
Lawrence, KS.

FEBRUARY 2002, Vol. 124 / 197



Effective Radiative Properties of a reasonable agreement is reacH&d This can be a resource-

. consuming process due to the need to solve the RTE repeatedly.
Cyllnder Array Fully anisotropic media require a large number of parameters to
describe the optical properties, and a large optimization problem
with an embedded RTE solver may become prohibitively expen-

Chongshan Zhang sive. In a recent contributiof7] we have proposed an alternative
method requiring only the direct solution of algebraic equations.

Abraham Kribus In the current paper, this procedure is applied to a specific ex-

e-mail: avi.kribus@weizmann.ac.il ample of a complex medium modeled as an anisotropic PM. The

model problem is a volume containing a regular array of cylinders
[2,3,5]. The anisotropy is due to the difference between the direc-

Environmental Sciences and Energy Research Dept., tion along the cylinders and the directions in the plane perpen-

Weizmann Institute of Science, dicular to the cylinders. The effective optical properties of this

Rehovot 76100, Israel medium were derived from the results of a numerical experiment.
The effective properties were then used to simulate a benchmark

Rami Ben-Zvi problem, and the results were compared to a reference solution.

Solar Facilities Unit, Weizmann Institute of Science,
Rehovot 76100, Israel
2 Numerical Experiment

The sample was a cube containing a section of the cylinder
Fully anisotropic problems are found where the radiative interacarray (Fig. 1). The array pitch is three cylinder diameters in both
tion is due to small-scale elements that lack spherical symmetgtections. The cylinders can be black, ideal diffuse reflectors, or
for example: fibrous insulation, finned heat sinks, plant canopiegray absorbindsurface absorptivity 0)4and diffusely reflecting.
and some solar energy absorbers. We present the effective bullfhe approach is based on the division of directional space into
optical properties of a PM composed of small-scale opaque cyliscrete solid angle intervals, following the Finite Volume method
inders. The properties are derived from data generated by detailggl9]. For convenience, we refer to these solid angle intervals as
Monte-Carlo numerical experiments. The data reduction procerdinateqalthough they are not identical to the classical definition
dure is relatively simple and does not require a full solution angtom the Discrete Ordinate MethndEach of the optical proper-
optimization of the Radiative Transfer Equation. Benchmark casgss has a distinct value within each ordinate, so that the number
are presented, comparing an exact solution (with geometric detail unknowns is related to the number of ordinate directions cho-
of the cylinder array) and an approximate solution using a corsen. The polar and azimuthal angles were divided into equal in-
tinuous PM model with the effective volumetric properties.  tervals. The directional grid resolution varied between4 and
[DOI: 10.1115/1.1423317 16X 8 (16 division in¢, 8, in §). The experiments were performed
numerically, using a Monte Carlo ray tracing procedure. Simu-
lated incident light was introduced within a single ordinate direc-
fion, and outgoing radiation was measured for each outgoing or-
dinate. The procedure was repeated with the incident light coming
within other ordinates.
The analysis method of the experimental results was presented
1 Introduction in detail in[7]. The general Finite_Vqume formulation of Fi_ter-
man et al.[10] was used, producing a coupled set of ordinary
Treatment of radiative transport in Participating Meti) is  differential equations. The discrete RTE was integrated over the
usually limited to semianisotropic media, i.e., volumetric absorgolume of the sample to produce integral energy balance equa-
tion and scattering coefficients that are independent of directicibns. This volume averaging required several simplifying as-
and a degenerate scattering phase function depending only onghgptions as described []. The transmitted and the scattered
angle between the incident and outgoing radiation. In a fully agontributions to the outgoing radiation were separated, and the
isotropic medium, the volumetric absorption and scattering coeafxtinction coefficient for each ordinate direction was found from
ficients depend on the direction of incident radiation, and the scah approximate equation involving only the transmitted contribu-
tering phase function depends separately on both the incident and
outgoing directions. A fully anisotropic PM can be a useful model
in problems of radiation transport through media containing
small-scale interacting elements that lack spherical symmetry and
are not randomly oriented, for example fibrous insulatidn X
finned heat sinkp2], plant canopie§3], and solar absorbefd,5].
Producing a useful PM model of such a system requires finding
the bulk optical properties of the equivalent PM. The optical prop-
erties often cannot be predicted from first principles and need to
be derived from experimental data. A sample of the medium is
exposed to a known incident radiation, and outgoing radiation
fluxes in several directions are measured. To analyze the results, a
guess for the optical properties is provided; the direct problem is =
solved by some approximation of the Radiative Transfer Equation
(RTE); and the outgoing flux results are compared to the experi-
mental measurement. The optical properties are then adjusted and
the computation is repeated within an optimization process, until

Keywords: Cylinder, Heat Transfer, Modeling, Numerical Meth
ods, Properties, Radiation
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tion. The phase function was eliminated next by summing equaediated). The variations with the azimuthal angde visible in
tions for all outgoing directions and using the energy conservatitime high-resolution solution, correspond to the angles where the
property of the phase function. This elimination produced equaylinders are alignedminimal extinction and staggeredmaxi-
tions for the scattering coefficient in each of the ordinate direecaum extinction. Each ordinate in the coarse grid solution is close
tions. Finally, given the extinction and scattering coefficients, a skt the average of the corresponding ordinates in the fine grid so-
of equations for the phase function can be solved. This procedluéon, with an average error of 0.5 percent. The optical properties
required solution of sets of algebraic equations, without the neatldifferent resolutions are then consistent. The distribution of the
for sophisticated solution methods of the RTE, and without iteracattering coefficient is similar to that of the extinction coefficient.
tive optimization. The scattering albed@atio of scattering coefficient to extinction

coefficien} is nearly constant over all ordinates, with an average

value of 0.63, which is very close to the real surface reflectivity of
3 Properties of the Cylinder Array 0.6.

Figure 2 shows the distribution of the extinction coefficient o _Figure 3 presents selected distributit_)ns of th_e phase f_unct_ion.
the array for a coarse and a fine directional grid. Each rectan égh phase f“”C.“O.” value_s are found in the_ azimuthal direction
corresponds to the solid angle range of an ordinate. The extincti posite to the |n_C|dent direction, representing strong backward
is low in directions along the cylinders’ axismall and large polar Scattering. There is no *memory,” however, of the incident polar

angle 6), and high in directions perpendicular to the afiister- angle since reflection from the cylinders is diffuse. Therefore, the
' medium is not truly backward scattering and cannot be modeled

as a semi-anisotropic medium. The minima of the phase function

are negative. This is clearly unphysical, and can be an artifact of

ol the simplifications made in order to model the average scattered
(a) 0.2 flux [7]. L. .

The statistical error of the Monte Carlo process is the analog of
measurement errors in a physical experiment. The number of rays
was changed between “l@nd 16 for the case of 16 ordinates
(4% 4). The largest error in the optical properties witH @ys

0 was 4 percent. FOrays were used in the results presented here,
with errors of at most 1 percent.
0 ¢
0 b 2n
T 1353
30
(a)
0 2F
0
0 T 2n —— Wall 2/4
. . . o - . . —o— Wall 5/6
Fig. 2 Anisotropic extinction coefficient as a function of polar 10 ax4 8x4 —o— Medium
and azimuthal angles: (a) ordinate resolution 4 X4 and (b) or- 8x8
dinate resolution 16 X8.
°\° 0 Vo NN | 3
T p—r ——— o) (b)
- (a) = 4° 2 30}
0 a
= ° —— Wall 2/4
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Fig. 4 Benchmark results: convergence of errors in absorbed
Fig. 3 (a) Phase function of incident ordinates 3 ~ #/8<0<w/2, power with number of ordinates, for (a) absorbing cylinders,
7w/4< p<3 /8, ordinate resolution 16 X8; and (b) cross-section (b) reflecting cylinders  (scattering medium ), and (c) absorbing
in the outgoing direction 3 #/8<0<w/2. and reflecting cylinders
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The effective optical properties should be independent of thA¢jscous Dissipation in Finite Thin_Gap

size of the sample if the PM model is valid. The size of the samp'&o .
was increased by changing the number of cylinder rows betweef20Uette Devices
and 6. The optical properties showed very little variation, indicat
ing that even three rows produce a good representation of the
behavior of the entire medium. Michael C. Wend|

Research Associate and Affiliate Professor, School of

Medicine and Department of Mechanical Engineering,

: . Washington University, 4444 Forest Park Blvd.
4 Benchmark Results and Discussion : ! '
The benchmark < defined bich waining ¢ on 8501, Saint Louis, MO 63108
e benchmark case is defined as a cubic box containing twelye ..

rows of cylinders for an overall size of 36 diameters. Wall 1 of the mail mwendl@watson.wustl.edu
cube aty=0 (Fig. 1) is hot, while all other walls and the cylinders
are cold. All walls are black. We measure the distribution of th@mesh K. Agarwal

radiation emitted from wall 1 that is absorbed in the other wall§he William Palm Professor, Department of Mechanical

and in the cylindersi.e., the medium_filling the boxThe top and  Engineering, Washington University, 1 Brookings
bottom (walls 2 and 4 are symmetric and.are counted togethe,‘brive, Box 1185, Saint Louis, MO 63130
The sidewalls 5 and 6 are also symmetric. A reference solution
was computed by detailed ray tracing of the full geometry of the
cylinder array. The PM model results were computed by defining
a continuous PM in the same volume as the cylinder array, usiAg analytical solution is reported for the temperature distribution
the effective optical properties that were presented in the previofidinite span thin-gap Couette devices which accounts for viscous
section, and then performing ray tracing through the effective coglissipation. Taken in conjunction with an established solution for
tinuous medium. the stable velocity profile, this result describes the standard ex-
Figure 4 shows the results for three cases: black cylingdys perimental configuration where no external heat fluxes are ap-
sorbing medium reflective cylinders(scattering medium and plied. We discuss physical aspects as well as conditions for which
cylinders that are both absorbing and reflecting. The error is deassical one-dimensional theory should be replaced by the
fined as the difference between the approximate solutid present result. [DOI: 10.1115/1.1418373
model using the effective propertjeand the reference solution. ) ] )
The errors show convergence as a function of the number of #eywords: Analytical, Conduction, Flow, Heat Transfer, Lami-
dinates in all three cases. Convergence is best for the absordi{d
case, but not as good for the two cases with a scattering compo-
nent. Nevertheless, the errors for axI® directional resolution
were Igss than 10 percent even in the presence of scattering, |niroduction
indicating that the solutions are useable even though not very
accurate. Couette flow devicefl] utilize the concept of two coaxial cyl-
The representation of scattering seems to cause larger errordnggrs enclosing a working fluid. Motion is sustained via shear
well as some negative values of the phase function. This is prdgrces generated by rotating one of the cylinders. In “thin-gap”
ably due to the simplifying assumptions that were used in tf@nfigurations, the ratio of gap size to inner cylinder radius is
derivation of the scattering coefficients and the phase funfipn Vvanishingly small and fluid response is independent of which cyl-
Additional work is needed on improving the procedure for derivinder functions as the rotor. The basic design has been used in
ing the scattering properties. Nevertheless, as a first attemptM@ny practical applications, including viscomefi3] and fluid
solve a complex problem that was not previously treated, tfi§ocessing3]. Moreover, it has evolved as a standard platform for
present results are a reasonable approximation. studying fundamental phenomena, such as laminar transition
[4-6] and viscous heating7—10!.
Couette devices are typically modeled using an idealized geom-
etry where cylinder spans are considered infifite-11]. Span-
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present here an analytical solution for this case. In light of prev Solution Procedure
ous studies of viscous dissipatipr—10|, we consider the imple-

mentation in which there are no externally applied heat fluxes. Equation(6) is not readily separable. We therefore employ the

integral transfornj17,1§

_ ¢

T = Z(B;,z")T(y,z")dZ 7a
2 Problem Formulation .8 Jo (8;.2)T(y.2) (72)

Let gap size and total span bkeandL, respectivelywhereL is  gnd

finite). Also, define the translation velocity of the inner cylinder .
surface au,, and takeT,, to be a reference temperature. Fluid - Z(B;,2)T(y.B))
properties are constant densitykinematic viscosityr, and ther- T(y,2)= E P y—— (7b)
mal conductivityk. Pertinent non-dimensional parameters are the =1 [5Z%(B;,2')dz

aspect ) ratio ¢=L/H and the Brinkman number Brynere the overbar notation represents a transform #igenval-
=[(pruy)/(kT,)]. The Reynolds number is relevant only to thejes are given bys;, andZ(;,z) are corresponding eigenfunc-
extent that it is below a critical value for the onset of flow instations. As boundary conditions are of the Dirichlet type, eigen-
bility, a prerequisite for the existence of stable Couette flow. Thelated quantities can be obtained explicfti] and are specified
seven parameter dimensional system therefore reduces to a pyahe expressiong;=j /¢ andZ(B; ,z)=sin B;z.

parameter dimensionless one defined by parameter spaa#)(Br, *Equation(6) is transformed using Eq7a). Regarding the La-
The parallel Couette flow model applied to the Nawer-Stokqga_Cian operato®T/dy? and 42T/ 3z? transform, respectively, as

equations yield$16] d?T/dy? and — B7T. It is necessary to transform the right hand
side of the equation on a term-by-term basis. Constants and terms
that depend only oy can be moved outside the transformation
integral and the equation can be written

Vau=0, (1)

and
27 . oo oo
) au\? [qu\? d_T_B?T:_leBrE E—l
VeT=-Br ) Tlaz) | (2) dy? ¢? m=1n=1 sinh yysinh a,
where u and T are the non-dimensional streamwise velocity X| coshyn(1—y)cosha,(1-y)
component and the temperature distribution in the cross-section,

respectively. These variables have been non-dimensionalized as )

u=u*/u, and T=(T*-T,)/T,, whereu* and T* are corre- XJ Z!sin ymz'sin apyz'dz’
sponding dimensional quantities. Independent variables are non- o

dimensionalized usindd as a length scale. The dimensionless

Laplacian operato¥? has the formp?/9y?+ 92/ 9z?, wherey and +sinh ym(1-y)sinh an(1-y)

z represent the directions normal and tangential to the moving ¢
surface, respectively. Boundary conditions governing the flow XJ Zj’cos ymZ' COSa,z'dZ’ |, (8)
profile are 0

whereZ| represents a shorthand notation #{3; ,z'). Evaluat-

u=0 at z=0, z=¢, y=1 and u=1 aty:O.(g) ing the integrals, we find

Boundary conditions for temperature are d*T = 16 Br[1-(-1)']]
dy? ! Xy
T=0 atz=0, z=¢, y=0, andy=1, 4) L.
1
that is, all surfaces of the instrument remain at the reference tem- X 2 2

peratureT,,. Equation(4) represents the standard case in which m=1 n=1 COShby,/ $—coshaym/ ¢

no external heat fluxes are appligd-10]. _ _
The exact solution for Eqg1) and (3) can be written for the X coshbmnm(1-y)/¢ _ coshammm(1-y)/¢
present coordinate system [ds] j2—a2, j2—b2,

9)
wherean,,=2(m—n) and b,,=2(m+n—1). Boundary condi-
) tions transform ag=0 aty=0_andy=1. _
The problem is now posed in terms of non-homogeneous ordi-
Using Eq.(5), du/dy anddu/ 9z are determined and their squaregiary differential equations fof. Since coefficients are constant,
are used to obtain the viscous dissipation source term iZkg. the method of partial fractions ‘may be used to solveTias the

4 i sin2m—1)7z/ ¢ sinh2m—1)7(1-y)/ ¢
uly.2)= = 2, (2m—1)sinh(2m—1) 7/ ¢

This procedure yields sum of a homogeneous solutidy and a particular solutiof p
v [20]. The homogeneous component is of the forfry

VoT=— 16 Br 1 =c; coshB;jy+c,sinh Bjy. If f(y) andD are taken to represent

¢? =1 n=1 sinh y,, sinh a, the right hand side of Eq9) andd/dy, respectively, the equation

for the particular solution may be written symbolically B
—,BJ-Z_)TP:f(y). Applying the method of partial fractions results
+c0s yz,, cos az,sinh y,(1—y)sinh a,(1-Yy)], (6) in Tp=[(D —ﬂ,—)*l— (D +B,—)’1]f(y)/(2,8j). Integrating this
expression and handling evaluation once again on a term-by-term
where y,,=(2m—1)w/¢ and a,=(2n—1)w/¢. Equations(4) basis for the double series embeddedf{y), we obtain after
and(6) govern the viscous dissipation problem we desire to solveonsiderable derivation the particular solution

X[sin yz,sin @z, coshy,(1—y)cosha,(1-y)
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?_16 Bril—(—1)/]j¢ w— < coshby,m(1—y)/ ¢—coshay,m(1—y)/ ¢
P 3 =1 =1 (coshbynm/ ¢—cosham,m/¢)(j2—b2 ) (j2—a2,)

(10)

Reconstructing the general solution s T,,+Tp, the integra-  While Fig. 1 suggests rapid convergence to idealized behavior,
tion constant; andc, can be evaluated using the transformeéf does not quantify error for finite values of when the span is

boundary conditions. The result can be written as approximated as being infinite. Here, we define an error measure
) Y. in terms of r.m.s. differences between the idealized profilé$
— 16 Br{1—(—-1)1j¢ 1 u=1-y andT=Br-y(1-y)/2, and their two-dimensional coun-
T(y.Bj)= 3 5 2 2 .2 terparts in Eqs(5) and (12). Figure 2 shows that both and T
™ m=1n=1 (J==bp)(j°—ay,)

converge logarithmically as functions o to their one-

coshby,,m(1—y)/ ¢p—coshay,,m(1—y)/ ¢ dimensional forms. Notice that contours forand T coincide at
Br=5.5. The hydrodynamic component governs error for
0=<Br=<5.5 because it represents the lower bound for error. Ther-
mal curves for B5.5 therefore have no physical significance.

(11) Conversely, increased dissipation governs the error for385.

coshb,,m/ ¢—cosha,, 7/ ¢
sinhjm(l-y)/¢

sinhjw/¢ To a good approximationl(.~3.5%), results in Fig. 2 are de-
To obtain the physical solutiofi(y,z), the inverse transform in scribed by
Eq. (7b) is applied to Eq(11), yielding £=0.16 Bre 1568 (13)
64 Br L where ¢=1/2 ande is the Euler number. That is, E¢13) de-
T(y.2)= 3 1:1;5 j sinjmzl¢ scribes the r.m.s. error when using the idealized thermal profile to

approximate Eq(12) and further describes the error when apply-
ing the corresponding hydrodynamic idealization to approximate
Eq. (5) if Bris set to 5.5.

Because of its logarithmic nature, the actual error will never

%

<SS -

m=1n=1 (j2=b2)(j2—a2,)

coshb,,,m(1—y)/¢—coshay,,m(1—y)/ ¢ identically vanish. However, one can choose an appropriate error
tolerance below which application of idealized theory is reason-
coshbpm/ ¢ — costemnm/ ¢ ably justified. Strictly speaking, the selected tolerance applies to

sinhjm(1-y)/ stable flow only. Any case involving additional higher-order flow
- (12) modes would likely add a numerical approach and formalized
sinhjm/ ¢ benchmarking would then be requirg2ll]. One can err conser-
Trivial modes represented by=2,4,6 . . ., have been removed. Vatively by choosing a sufficiently low tolerance, for example,
=10"°. A neutral curve can then be found which separates the
4 Results one and two-dimensional models by plotting the locus of points in
(Br,¢) space for this value. This procedure results in the map
The Brinkman number appears simply as a scaling factor fehown in Fig. 3. The vertical line represents the lower error
the magnitude of in Eq. (12), while the aspect ratio is embeddedbound, which is valid for Brinkman numbers up to 5.5. Here,
within the series. The rati@/Br therefore describes the topologyone-dimensional modeling is justified for approximately7.3.
of all possible temperature profiles associated with stable flomor Br>5.5, thermal effects govern the problem and the one-
Figure 1 shows several examples. Small valueg gfeld asym- dimensional simplification may only be applied at progressively
metries where maxima are shifted toward the moving surfadarger aspect ratios. The thermal curve has a steeply increasing
This behavior arises in response to the fact that velocity gradiendétgpe implying that the required value gfis only a weak func-
especiallygu/ dy, increase near=0 and decrease near=1 as¢ tion of the Brinkman number. This can also be inferred from the
is reduced. These gradient shifts have a commensurate effect uplmse spacing of thermal contours in Fig. 2.
the dissipation source term in E(). The degree of asymmetry
lessens as the aspect ratio is increased. In the drite, a para-
bolic profile is obtained aboug=1/2 as predicted by standard
one-dimensional theorj11].
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y Fig. 2 Convergence rate of velocity and temperature profiles

at the device centerline (z=¢/2) to their one-dimensional
Fig. 1 Thermal shape profiles (7/Br) at the device centerline forms. Dashed line represents coincident contours for tem-
(z= ¢/2) for aspect ratios 1 /2, 1, 2, and perature at Br =5.5 and velocity
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Introduction =k,/pc are the thermal diffusivity of the porous medium respec-

. . . ively along ther andz directions. Asp andc are assumed to be
Convective heat transfer in volumetrically heated porous encl nstanta, and a, are essentially the ratios of thermal conduc-

sures is of fundamental importance in a number of technologicacf. o o L ;
applications such as storage of agricultural products, fermentatﬁ%t'es, in the r, andz dlre(_:tu_)ns._ In the above’=—1kdy'/dz
pel v’ =1ray’'/or. By eliminating the pressure term from the

process in food industries, packed-bed chemical reactors, nuclg . > - .
reactor assembly and is also of interest in environmental scienﬁgmentum equations by cross-differentiation, the governing Egs.

and geophysics. Much of the work on this topic has been co [)—(4) may be rewritten in the non-dimensional stream-function-
cerned with an isotropic porous medium. Notable among them dfanPerature form as
the works of Haajizadeh et aJ1] and Prasad2], on vertical

rectangular cavities, Stewart and Dof8d, Prasad and Chy#] L 0| 1ay| 1 a9 \1ag| a0

and Rao and Wanfp] on vertical cylinders. JRIR 0R + A2 oZIR2Z|1 ™ Rakﬁ ®)
However, in many applications, porous materials are aniso-

tropic, for examplg, drying of preferentially c_)riented. fppd grains, a0 o a6 P ( 30) 1 9 ( (90)

columnar dendritic structures formed during solidification of —Z __— A _ |R—|+ — —|R—|+2AR.

multi-component mixtures, tubular packed bed reactors and rod /R 92 dZ JR ~ oR\ IR} NAIZ\ IZ

bundles in a nuclear reactor core. Due to the preferential orienta- (6)

tion of the porous matrix in the above applications the permeabil- . . . . » ]

ity and equivalent thermal conductivity of the porous matrix ar&ne dimensionless variables used in writing the above equations
different in different directions. Only recently, researchers ha€: R=r/rq, Z=2z/H, A=H/ro, and ¢y=4'/a;r,. Since there
started investigating natural convection in heat generating anidd-no obvious reference temperature difference available, the
tropic porous media. Royer and Flof€] considered natural con- temperature is non-dimensionalized using the volumetric heat
vection in an anisotropic porous layer inter-bedded horizontalfjeneration rate aﬁz(T—TC)/(q’"rSIZKr). As a result of sym-
into a homogeneous impermeable medium enclosed in a rectaretry about the axis of the cylinder=0, Egs.(5) and (6) are
gular enclosure. Parthiban and Pafi] studied onset of convec- solved with the following hydrodynamic and thermal boundary
tion in a horizontal layer of heat generating anisotropic porowsnditions:

medium. 90
The objective of the present work is to study natural convection R=0, y=0, —=0; R=1, =0, §=0;
in a vertical cylindrical enclosure filled with a heat generating JR

porous medium, which is both hydrodynamically and thermally

anisotropic. A porous medium is said to be hydro-dynamically 20 EY)
anisotropic when it has different permeabilities in different direc- Z=0, =0, =0, Z=1, y=0, - =0.
; i ; . . . aZ JaZ
tions whereas it is said to be thermally anisotropic when it has

different thermal diffusivities in different directions. Equations(5) and(6) are solved by the finite volume method as

outlined by Gosman et dl8]. The discretization in this scheme is
Mathematical Formulation equivalent to central differences for all terms except the convec-
The physical system under consideration is a vertical cylindgye.term in the energy equation, for which second upwind _dlffer-
éncing has been employed. To solve the system of algebraic equa-

filled with a porous medium. The wall of the cylinder is consid-; f S . .
ered to be isothermally cooled B while the horizontal surfaces tions thus obtained, SOR point iterative solver is used that makes

are adiabatic. The porous matrix is both hydrodynamically afie Of the new values as soon as they are available. Anon-uniform
thermally anisotropic, and is saturated with an incompressi id field, varying in the form of geometric progression, with very
fluid. The principal directions of the permeabilitié@§) and effec- |r(;e grids n?akr] the .c(j:e.ntral _I;nz a;)nd the Wf%” IS hemployled. The
tive thermal conductivitiegk) coincide with the horizontaf) and & eqduac_ga 0 1t0§< 198'1 1S dver_l I’Ile h Y ccl))mpangg the reilé:tlss 1com-
vertical () coordinate axes and hence the flow is assumed to the Vr\:'t d&'lff an W't. those o ’([ja}lne gsmg? a
two-dimensional. The thermophysical properties of the fluid a9 The difference in maximum non-dimensional temperature

solid matrix are constant except for the fluid density variation i '?d.'” maximum stream “!”Ct!on value for the wo grid sizes is
the body force term, i.e., the Boussinesq approximation is e ithin 1 percent. Hence grid size of 18101 has been used for

ployed. The convecting fluid and the porous matrix are in loc fhle parametric study. The energy equation is under relaxed at high

thermodynamic equilibrium. Darcy’s law is assumed to be vali _aylelgh_ numbers. A convergence criterion of iOpercent
The heat is generated by a uniformly distributed energy sourcen@nge in bothy and ¢ at all nodes in the domain has been
The governing equations for axisymmetric, steady-flow througtf'ected to terminate the iterative scheme.
the porous medium then are . .
Results and Discussion
9 9 Numerical results for the streamlines, isotherms and Nusselt
E(VU')‘F E(ru’):o (1) numbers are obtained for GsK*=<10.0, 0..A=<10.0, 1<A
<5 and 18<Ra" <10*. The range of permeability and thermal

K diffusivity ratios are chosen based on the work of Nd&le
’ r

ap
u=- ; (ﬁ) ) Validation. The results obtained by the present computational
scheme are compared with the results of Rao and Wahgnd
Prasad and Chii#] in Tables 1 and 2 respectively, which are for

v =— & é_p_ gB(T-T )} (3 an isotropic porous medium. The present results are found to be in
w oz ¢ good agreement with them.
Streamlines and Isotherms. For the case of anisotropic heat
2 "
u,‘7_T+v,’9_T:a Ei ri) ta d T+q_ 4) generating porous medium representative streamlines and iso-
ar gz '[roar\ ar Zgz* ~ pc’ therms are shown in Figs. 1 and 2 far2 and R4=500. The

flow consists of an asymmetric single cell rotating slowly in the
whereK, andK, are the permeability of the porous medium reelockwise direction. Figure 1 brings out the effect of permeability
spectively along ther and z directions; @, =k, /pc and «, ratio on the flow pattern. Figure(li) illustrates the streamlines
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Table 1 Comparison of results with those of Rao and Wang

Wiin

0
[

Rao and Wang [9] | Present work | Rao and Wang [9]

Present work

A Ra'
(81 x 81) (151 x 151) (81x81) (151 x 151)
10 0.263 0.264 0.157 0.157
4 | 1x10* 0.080 0.079 -25.000 -24.414

[9]

Note: Ra' = Ra" /2, 8" max = Bmax /2

Table 2 Comparison of results with those of Prasad and Chui

(8]
Omax
A Ra’ Present work Prasad and Chui [8]
(151 x 151) “1x6l)
Tx10° 0.400 0.398
1 1x 10° 0.185 0.180
1x 10° 0.082 0.078
Ix10 0.541 0556
5 1x10° 0.277 0.277
1x 10 0.128 0.128
20 7
Wlmax = 13.31 2'0/
emax = 0.175
A A
(@)K =0.1,A=1.0
0.0 0.0
0.0 R 1.0 0.0 R 1.0
2.0 2.0 1
hlflmax =5.27 /
emax = 0-286
A A
b)K =1.0,A=1.0
0.0 * 0.0
0.0 R 1.0 0.0 R 1.0
20 | 20
Iylmay = 1.35
emax = 0-493
A A
(c)K =10.0,A=1.0
00 0.0
0.0 R 1.0 0.0 R 1.0
Fig. 1 Streamline and isotherm plots for different permeability
ratios keeping the thermal diffusivity ratio constant at A=1
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2.0 i 2.0
I\UImaX = 603
emax = 0267
A A
(@) K =1.0,A=0.1
0.0 | 0.0
0.0 R 1.0 0.0 R 1.0
0 2.0
emax = 0286
A A
(b)K =1.0,A=1.0
0.0 ¢ 0.0
00 R 10 oo R 10
20
emax = 0317 ‘
A A
(©)K =1.0,1=10.0
0.0 ! 0.0
0.0 R 1.0 0.0 R 1.0
Fig. 2 Streamlines and isotherms for different thermal diffu-
sivity ratios keeping the permeability ratio constant at K*=1

and isotherms for the isotropic cagee., K* =A=1.0). Sharp
gradients in velocity and temperature are observed near the iso-
thermally cooled side wall. Temperature stratification is observed
in the upper portion of the cylinder. Figuréal shows the stream-
lines and isotherms fd{* =0.1 and\=1.0(i.e., the permeability
in the vertical direction is greater than that in the horizontal direc-
tion). The buoyancy induced flow along the isothermal cold wall
is much stronger for this case than #é* =1.0. The flow chan-
nels along the side wall. When compared to isotropic case the
extent of thermally stratified zone increases.

The opposite extreme is shown in Figure)l For K* =10.0
and A=1.0, no sharp gradients in velocity and temperature are
observed near the side wall, while the horizontally flowing fluid
channels along the top and bottom adiabatic walls. This practi-
cally induces the so called “plug flow” in the fluid. Due to the
relatively low permeability in the vertical direction, the intensity
of natural convection flow is very weak as compared to isotropic
permeability case. Also the flow outside the “horizontal channels”
is very nearly parallel to the vertical wall. Once the fluid reaches
the top or bottom adiabatic wall, it bends sharply and merges into
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the fast flowing fluid in the horizontal channels. Consequently, the 1.0

isotherms are almost vertical, indicating that heat transfer acros b A =30
Ra’ =500

the enclosure is mostly by conduction. §
Figure 2 shows the effect of thermal diffusivity ratio via stream- 1
line and isotherm plots foK* =1.0. ForA=0.1 (Fig. 2(a)), the .
thermal diffusivity is much higher in the vertical direction than in 0.5
the horizontal direction. Hence the temperature gradient in the
vertical direction is observed to be smaller than thatXer1.0
case. However, the flow intensity is slightly higher than that for
A=1.0. As shown in Fig. @) and Zc), increase in thermal diffu- g
sivity ratio has virtually no effect on the flow pattern. Due to the ©
relatively low thermal diffusivity in the vertical direction, the tem-
perature stratification in the vertical direction is stronger for
A=10.0 than that fon=1.0.

Centerline Temperature Distribution. Figure 3 presents the
temperature distribution on the centerline of the cylinder for three —A— =01
different permeability ratios while keeping the diffusivity ratio o K'=100

constant aik=1 and also for three different thermal diffusivity i E::;:?
ratios while keeping the permeability ratio constaniat=1.0. 0.1 T T T T
As the permeability ratio decreaséis., the permeability in the 0.1 1 10
vertical direction is larger than that in the horizontal directjdhe .

dimensionless temperaturg, is observed to be less than that in Kori

the isotropic case due to stronger buoyancy. As the permeabil
ratio increasesi.e., the permeability in the horizontal direction is
larger than that in the vertical directiprthe dimensionless tem-
peratured, is found to be higher than the isotropic case. Also, the

larger the permeability ratio, the larger is the temperature gradient

d60,19Z at any heighZ.

When the thermal diffusivity ratio is above unity, the dimendiffusivity in the vertical direction, a smaller temperature gradient
sionless temperaturé, is observed to be less than the isotropi€Xists in the vertical direction such that the temperature falls be-
case everywhere except in a small region near the top adiabd@¢ the isotropic value near the top adiabatic wall.
wall. Due to the relatively smaller thermal diffusivity in the ver- .. Temperature. Figure 4 shows the effect of per-
tical direction, there exists a very large temperature gradle%,

which results in the temperature exceeding that of the isotrop}lr?eabimy ratio and thermal diffusivity ratio on non-dimensional
case, near the top adiabatic wall. As the thermal diffusivity ratio aximum temperaturér. For the entire range of aspect ratios,

reduced below unity, the centerline temperature is observed toﬁ{ﬁ?’( increases with an increase in permeability ratio because of
; unity, tr P - d flow channeling along the horizontal walls and also because
higher than the isotropic case everywhere except in a small regi

. - . educed flow velocity everywhere in the cavitiRefer to Fig. 1
close to the top adiabatic wall. Due to the relatively larger thermg S0. 6, varies linearly with the permeability ratio for the range

of permeability ratio considered in the present work. WIik&h
—10, 0,2« 1S Observed to approach the pure conduction value. For
A=2, 6,,a 1S Observed to increase linearly with thermal diffusiv-
ity ratio. However, it is evident that the effect of thermal diffusiv-
ity ratio on 6,5, is not as severe as that of permeability ratio.
Effect of permeability ratio and thermal diffusivity ratio oy,
presented in Fig. 5 foA=1 shows an interesting feature. Though
OmaxiNCreases with an increase in permeability ratio, the variation
is non-linear. However, the variation is linear for higher aspect
ratios (A=2) as shown in Fig. 4. For a given permeability ratio,
there exists a critical value of at which 6,,,, becomes a mini-
0.3 mum. However the difference between the maximum and mini-
) mum is within=10.0 percent of the mean value for the ranga of

° considered in the present study. This critical value\ dficreases
with an increase irK*. Existence of a critical value of with
respect to the variation of Nusselt number has been reported ear-
lier by Chang and Liri10] for anisotropic porous medium without
heat generation.

The maximum temperature can be correlated in terms of aspect
ratio, Rayleigh number and for the first time, permeability ratio
and thermal diffusivity ratio as

I'—% 4 Effect of permeability ratio and thermal diffusivity ratio
on the maximum temperature for A=2
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7 for the range K10°<Ra*<1x10%, 2<A<5, 0.1=K*<10.0,
and 0.:=1=<10.0. The correlation coefficient and the average er-
Fig. 3 Effect of permeability ratio and thermal diffusivity ratio ror for the correlation are 0.998 and3.23 percent respectively,
on centerline temperature distribution which show the goodness of the fit.
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0.5

h = heat transfer coefficient, W/

K = porous medium permeability,
*
k
u

= anisotropic permeability ratids, /K,
= porous medium effective thermal conductivity, W/mK

0.4
locus of minimum

Nu = Nusselt number based on cylinder radibs, /k,
03 | p = pressure, Pa
_____ q” = volumetric heat generation rate, Wim
S R v i SRt r = radial co-ordinate, m
- ' R = dimensionless distance in radial directiof;,
T oot ] ro = cylinder radius, m
‘ Ra = Darcy modified Rayleigh number,
S —— 1=100 98K, ro(q"r312k,) va,
—&— A=10 T = temperature, K
—A— A=01 u’, v’ = fluid velocity in ther andz directions, m/s
— K =10.0 z = axial co-ordinate, m
"""" if ;-(1’ Z = dimensionless distance in the axial directiaft
0.1 A E s — Greek Symbols
0.1 1 5 10 o = thermal diffusivity, n¥/s
K or A B = isobaric coefficient of volumetric thermal expansion,

1/K
= anisotropic thermal diffusivity ratiog, / «,
dimensionless temperaturel € T.)/(q"r2/2k,)
dynamic viscosity, Ns/f
kinematic viscosity, s

Fig. 5 Effect of permeability ratio and thermal diffusivity ratio
on the maximum temperature for A=1.0

TR o>
Il

Overall Heat Transfer. For the problem considered here, . .
there is no well-defined characteristic temperature difference to = fluid den3|ty,_kg/n'°1
express the heat transfer coefficient. However, one can define an % = Stream function, rifs
overall Nusselt number based on the mean temperature on the ¥ = dimensionless stream functiog,/a,r
centerline. When the heat transfer coefficient is defined in terms
(Tm—To), the overall Nusselt number is obtained as Nu
=h,,ro/k,=1/6,,. The overall Nusselt number can thus be cor- av = average

§lfjbscripts

related as ¢ = cold vertical wall
m = averaged along the line of symmetry
NuaU:0.556Ré0.396A*0.23q<**0.33%\0.032‘ (8) max = maximum
o = line of symmetry (=0)

for the range X10°<Ra <1x10%, 2<A<5, 0.1=<K*<10.0, r, z = radial and axial directions
and 0.5\=<10.0. The correlation coefficient and the average er- z = axial direction

ror for the correlation are 0.998 and3.34 percent respectively,

which show the goodness of the fit.
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Application of Differential Transform “m(x @):0 o

Method to Heat Conduction in w0\ dx/

Tapered Fins and a dimensionless temperature of unity at the basel(), i.e.,
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Differential Transformation Method

*© kT Ak
x| d“u
f(X):IE) ks (4)
This paper analyzes steady-state heat conduction in a triangular- ) . . X:_O )
profile fin using a relatively new, exact series method of solution The differential transformation df(x) is defined as
known as the differential transform method. This method con- 1 [d*u
verges with only six terms or less for the cases considered. Its F(K=73% (5)
advantage is that, unlike many popular methods, it is an exact kt1dx®],
method and yet it does not require the use of Bessel or othefrhan the inverse differential transformation is
special functions[DOI: 10.1115/1.1423316
_ k
Keywords: Computational, Finned Surfaces Heat Transfer, Tem- f(x)_kzo XF (k). (6)

perature, Heat Conduction
Before taking the differential transformation of each term in Eq.
(1), we note that

Introduction x—d8(k—1)={1 if k=1 otherwise 0
Zhou [1] introduced a method, based on Taylor series expan- d"6  (n+k)!

sion, for solving initial-value problems of electrical circuits. He —— ' “T(n+k),

named the methodifferential transformationLater, Chen and Ho dx k!

[2] applied the differential transformatid®T) method to solution whereT(K) is the differential transforniDT) of 6(x).
of second-order eigenvalue problems. Recently Malik and Dang .
[3] first applied the DT method to vibration analysis, specifically
the fourth-order system for vibration of prismatic beams. f(x) 00— >, F(NT(k=1),
After completing the present work, the author learned, from one 1=0
of the reviewers, of previous work by Yu and CHén. They dealt whereF (k) is the DT of f(x).
with determination of the optimal length for circular fins of rect+or the first term in Eq(1), f(x) is simply x andn=2. Thus,
angular profile. They considered thermal conductivity varying iy K
with temperature, heat transfer coefficient varying with radial po-
sition and nonlinear conducting-convecting-radiating heat transfer. XWH;} S(I=D(k=1+D)(k=1+2)T(k=1+2).
Solution was by a domain version of the differential transforma-
tion method, although few details were given regarding accuradyer the second term in Eql),
The present paper considers steady-state heat transfer in a de
triangular-profile fin with constant properties and gives details of — s (k+1)T(k+1),
application of the method as well as a convergence study. dx

and for the third term,
The Boundary-Value Problem — m26(x)— — m2T(K).

Let x be the position coordinate along the axis of the(fior-

malized by the lengti.) and # dimensionless temperature aboveThus' the transformed version of B@) is

ambient. The cross-sectional area of the fin varies linearly with K
measured from the apex. Then the governing differential equation E S(I—=1)(k=1+1)(k=1+2)T(k—=14+2)
is the following second-order equation with varying coefficients 1=0
(Arpaci, [5]) +(k+1)T(k+1)—m2T(k)=0. 7)
Xﬂz + %_ m26=0, @ The transformed boundary conditions are
dx®  dx K
where @ is the temperature measured above ambient and normal- E S(1=1)(k+1)T(k+1)=0 (8)
ized by the base temperature, anélima fin parameter given by =0

m2=(h;+h,)AR/K. K
HereARis the plate aspect ratitength /depth, h,; andh, are the ;, T=1. ©
convective heat transfer coefficients of the top and bottom sur- . . .
faces, anck is the thermal conductivity. Expanding the boundary condition E) for variousk values,
The boundary conditions are no heat flux at the tip one can obtain all th&(k) values as zero which is a trivial solu-

tion. However, the solution as given YT method Eq(6) auto-
Contributed by the Heat Transfer Division for publication in tf@JBNAL OF matically satisfies this boundary condition as-0. In other

HEAT TRANSFER Manuscript received by the Heat Transfer Division January 12VOrds, the physical significance is that =s-0, all the coeffi-
2001; revision received August 15, 2001. Associate Editor: G. S. Dulikravich. ~ cients ofd#/dx should be finite. As there are no negative powers
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of x in Eg. (6) the coefficientsT(k) are indeed finite and the Table 1 summarizes the end and mid point temperatures along
boundary condition is automatically satisfied. For the case of taith fin efficiency for various values ah with three terms and
pered fins having both ends of finite thickness, this boundary cofable 2 gives the number of terms required to converge to an

dition is necessary to solve the problem completely. exact solution up to five significant digit accuracy.
Successive applications of E) yield
k=0: T(1)—m?T(0)=0 or T(1)=m?T(0) Conclusion

k=1: 2T(2)+2T(2)=m?T(1). The advantage of thBT method over other methods, such as

Thus the ordinary and variational heat balance integral method, the or-

’ —m2 o dinary and improved Rayleigh method, and the mean-square error

T(2)=(m74)T(1)=(m /4;1—(0) method|[6], is that theDT method is exact. Nevertheless it is
k=2: 6T(3)+3T(3)=m"T(2). rather straight forward to apply.

Thus,

T(3)=(1/9m?T(2)=(m°/36)T(0).

Inserting the above expressions fB(0) throughT(3) into Eq. Acknowledgment
(9) and solving forT(0) yields The author acknowledges the computations performed by
Krishna K. Devarakonda.

T(0)= (10)

1+m?+(m*/4) +(mP/36) °
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0(x)=T(0) +XT(1) +X2T(2) +x3T(3). Laminar Mixed Convection Adjacent
For the case ofn?=1, the dimensionless temperature at the midto Three_DimenSiona|
point (x=1/2) is 0.6874993, which is 0.0717 percent higher tha% .
the exact solution. Fin efficiency is defined as the ratio of the BACKward-Facing Step
actual heat transfer rate through the base of a fin to that of an ideal
fin having a uniform temperature equal to the base temperature of =
the actual fin. Fin efficiency is probably a better measure of tfe. Li and B. F. Armaly
accuracy of the method than the temperature values mentiori@dpartment of Mechanical and Aerospace Engineering
above. Fom?=1, theDT method givesy=69.5 percent or 0.372 and Engineering Mechanics, University of
percent lower than the exact value. Missouri-Rolla, Rolla, MO 65409

T""fb'el. Rofm and mid-point temperaul”e?]a”d fin eﬁiCieZ‘/Cy as  gjmulations of three-dimensional laminar buoyancy-assisting
aarlg:]CtEgZeos )parameter m using only three terms (% error i iy o4 convection adjacent to a backward-facing step in a vertical
P rectangular duct are presented to demonstrate the influence of

m 025 0.5 0.75 1.0 L5 20 Grashof number on the distributions of the Nusselt number, and
) 00405 o798 05073 0430 02069 T0.0957% the reverse flow regions that develop adjacent to the duct’s walls.
The Reynolds number, and duct’s geometry are kept constant: heat
©0 00 1{0016) 1(0079) | (1025) | (495 flux at the wall downstream from the step is kept uniform but its
a2 05650 08916 107904 |ocaa 105133 03917 magnitude varied to cover a Grashof number range 64@00;
all the other walls in the duct are kept at adiabatic condition; and
00 00 100 00717) | (0864) | (4.12) the flow, upstream of the step, is treated as fully developed and
Fin 96.99 5926 7941 6951 527 302 isothermal. Increasing the Grashof number results in increasing
‘ the Nusselt number; the size of the secondary recirculation flow
Efficiency, % | (:001) | (-:0022) | (-0.088) | (-0372) [(2389) | (-6:892) region adjacent to the stepped wall; the size of the reverse flow
region adjacent to the sidewall and the flat wall; and the spanwise
Table 2 Exact values and the number of terms required to ob- flow from the sidewall toward the center of the duct. On the other
tain them, as a function of parameter m hand, the size of the primary recirculation flow region adjacent to
the stepped wall decreases and detaches partially from the heated
m 0.25 0.5 0.75 1.0 1.5 2.0 . .
stepped wall as the Grashof number increases. Details are pre-
T(0) 0.9403 0.7898 0.6072 0.4386 02048 | 0.0883 sented and discussed DOI: 10.1115/1.1423909
T(1/2) 0.9699 0.8916 0.7904 0.6868 0.5089 0.3765 . L . .
Keywords: Convection, Finite Volume, Mixed Convection, Sepa-
Fin 96.99 89.26 79.48 69.74 5398 | 43.13 rated, Three-Dimensional
Efficiency %
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Introduction dinate system is located at the bottom corner of the step as shown
Separated and reattached flow occurs in many heat-exchangm 1. 1. The goveming equations for laminar buoyancy assisting

devices, such as electronic and power generating equipment an

dump combustors. A great deal of mixing of high and low energy

fluid occurs in the separated and reattached flow regions, t . . .
impacting significantly the heat transfer performance of these %}u_oyancy effect.s are mode_led using the Boussinesq approxima-
n. The full elliptic three-dimensional coupled governing equa-

vices. Studies have been conducted extensively during the p rrg P )
decade, and the backward facing step geometry received mosmalsa?]r(f ti‘;l\??gwuzgg(xﬂgfe?lil;r?gmn;?rg?gréoasr;?ull)atsvtgfether'
the attentiorf1-3]. The majority of published work dealt with the velocity components in coordinate directiany, andz as shown

two-dimensional isothermal flow behavior, and comparatlvelpﬁ Fig. 1) in this geometry. Details of the formulation are given by

case. Forced eonvection result have boan reported or & duct (i1 ATalYISL. The physical properties are treated as consats
an aspect ratio of 16 by Iwai et 44], with an aspect ratio of 12 in"the simulations and evaluated for air at the inlet temperature of

by Pepper and Carringtdib], and with an aspect ratio of 8 by TO_.ZO ¢ (|..e., den3|wg,35) equals to 1.205 kg/f dynqmlc vis-
Armaly et al.[6]. The numerical study of Ilwai et al7] estab- cosity (u) 's; 1.81x 10 kg/m-s, _thermal co?ductmty(k) IS
lished that an aspect ratio greater than 16 is needed to maintr:tﬁJ.1'(31259 W/m C, specific heaty) IS 1005 J/kg°C, and volumet-
small two-dimensional region near the centerline of the duct wifl coefficient of thermal expansiogp) is 0.00341 1/8. The
expansion ratio of 2 at Reynolds number of 250, and for high pundary conditions are treated as no slip conditions at the solid
Reynolds number the flow becomes three-dimensional throughd{fi!lS: @nd adiabatic at all the walls with the exception of the
the duct. To the authors’ knowledge the work of Iwai et[8l.on ownstream stepped we(Nr/S=O._0 m, for O._@Ex/Ss 50, and all

the effects of inclination angle on the heat transfer for a duct wiﬁj that was treated as having a uniform heat fiug, (
aspect ratio of 16, and the work of Li and Armd®| on mixed ~ 7k‘9T/‘7y|y:.0)' The uniform heat flux at the downstream
convection in a duct with aspect ratio of 8 are the only publishéﬁepped wall is varied while keeping the flow rate const&y-

three-dimensional results that incorporate the buoyancy force JRIdS number, ReZpugh/u.=200, whereu, is the average inlet
the analysis. velocity in the upstream section of the duict order to investigate

the effects of the buoyancy forcéhe Grashof number, Gr
. . , =p?9Bq,S* u?k, and 0.6<Gr/Re€<0.1) on the flow and heat
Model Description and Simulation transfer behavior. Symmetry conditions were imposed at the cen-
Three-dimensional laminar buoyancy-assisting convection floi@r width of the ductz/L =1, for all x andy), and fully developed
in a heated duct with a backward-facing step is numerically simgonditions were imposed at the outlgt S=50, for ally andz)
lated and the computation domain is shown in Fig. 1. The upnd inlet planegx/S=—2, 1<y/S<2, for all 2) of the computa-
stream height of the du¢h) is 0.01 m, its downstream heigti) ~ tion domain.
is 0.02 m, and its width i$W) is 0.08 m. This geometry provides Hexahedron volume elements are used in the simulations. The
a backward facing step height 8 0.01 m, an expansion ratio of convergence criterion required that the scaled residuals be smaller
ER=H/(H—S)=2, and an aspect ratio &R=W/S=8. By ex- than 10“ for the continuity and the momentum equations and
ploiting the symmetry of the flow field in the spanwise directionsmaller than 10° for the energy equation. All of the calculations
the width of the computation domain was reduced to half of the@ere performed on HP Visualine C200 workstations, and the CPU
actual width of the ductl{=0.04 m). The length of the compu- time for converged solution is approximately five hours. Detailed
tation domain is 0.02 m and 0.5 m upstream and downstreamd#dscriptions of the CFD code and the solution procedure can be
the step respectively, i.e; 2<x/S<50. The origin of the coor- found in the FLUENT manual. The grid was generated to insure
high density close to the walls and the step, where high gradients
are expected, in order to insure the accuracy of the simulation.
Grid independence tests were performed for the case with Rey-
nolds number of Re400, and wall heat flux ofqy
=21.19 W/nf. Comparisons of the results for the minimum and
maximum temperature on the downstream stepped wall, reattach-
ment length at the center of the duct and the minimum reattach-
ment length are conducted for different grid densities downstream
of the step, 100() X 20(y) X 20(z), 125x25x25, 150<30x30,
and 180<35x 35, respectively. The results show that for the larger
grid (180X 35x35), the differences are less than 1 percent for the
temperature and reattachment length. A grid of X80x30

ed convection flow(with gravity, g, in the streamwise direc-
) with constant properties under steady conditions are formu-
ed for continuity, momentum and energy conservation. Thermal

/\
\///

Heated bottom wall

Side wall downstream of the step and a grid of»205X30 upstream of the
step are selected for this simulation.
Symmetry center plane
g
Results and Discussion
(0,0,0)4 X

The present study is an extension to the one reported by Armaly
et al. [6], dealing with the forced convection in the same duct
geometry. The “jet like” flow that develops near the sidewall
within the separating shear layer, and the reverse flow that devel-
ops adjacent to the sidewall are the major three-dimensional flow
features in this geometry. These features also dominate the flow
and heat transfer behavior in mixed convection. The focus of this
study is on examining and quantifying the effects of the buoyancy
force (Gr) on the flow and heat transfer characteristics.

Impingement of the “jet like” flow on the stepped wall is re-
sponsible for creating a minimum in the spanwise distribution of
Fig. 1 Schematic of the computation domain the reattachment line, along with a maximum in the Nusselt num-

=

l
]
=

e/ A
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lines represents the downstream and the upstream boundaries of
the reverse flow region that develops adjacent to the sidewall. At

) the downstream boundary the flow reverses its direction and starts
eattachment ling flowing upstream toward the step, and at the upstream boundary
that flow reverses its direction again to move in the downstream
direction with the main flow. For low Grashof number,<Gf00,

the reverse flow region adjacent to the sidewall develops at the
upper corner of the sidewall and that region is separated from the

4 6 8 primary recirculation flow region. As the Grashof number in-

creases, G¢700, the reverse flow region that develops adjacent to

Fig. 2 Effects of Grashof number on the distribution of the the sidewall merges with the primary recirculation flow region as
reattachment line shown in Fig. 3. These results also demonstrate that the primary

recirculation flow region is vented to the main flow at the plane of
z/[L=0.01 for Grashof number equals to 4000, but the reverse
ber distribution near the sidewall. Spanwise distributions of redtow region adjacent to the sidewall remains connected with the
tachment line(as defined by the locations Whe&e/ﬁy|yzo) for primary recirculation flow region at that plane. Results in Fig. 4
the primary and secondary recirculation flow regions are préepresent the linked point& ling) that identify the locations
sented in Fig. 2 for different Grashof numbers. The minimum thithere the streamwise-velocity component is zero on a plane
occurs in that distribution near the sidewall can be seen clearly fagar the flat wall of the duct g S=1.99. Each one of these lines
Gr=0 and 500. The maximum length of the primary recirculatiofépresents the downstream and the upstream boundaries of the
flow region occurs at the sidewall and not, as expected, at tiRverse flow region that develops adjacent to that wall, similar to
center of the duct. As the Grashof number increases, i.es5@0, What was described in Fig. 3. The depth of that region in the
the primary reattachment line moves closer to the step, and gRanwise direction extends to approximately 15 percent of the
secondary reattachment line moves away from the step. THigct's half width at Gr=0, but extends to approximately 40 per-
means that the size of the secondary and the primary recirculat@git of the duct's half width at Gr4000.
flow regions increase and decrease, respectively, as the Grashd¥ue to space limitations, graphical results for the effects of the
number increases. The figure shows that the primary recirculatiGiashof number on velocity distributions are not presented in this
flow region is partially lifted away from the heated stepped wallote. Results for the streamwisevelocity component indicate
and the secondary recirculation flow region is vented to the méifat a “jet like” flow develops in the separating shear layer near
flow at the center of the duct for rL000. The size of that lifted the sidewall and the magnitude of the peak velocity decreases and
region increases with increasing Grashof number. The figupoves closer to the sidewall with increasing Grashof number.
shows that only a small portion of the separating shear-layer Rgsults for the transverse-velocity component indicate that its
reattached to the stepped wall for the case where the GrasRtAgnitude is mostly negative due to sudden expansion in geom-
number is 4000, while the rest of the region that is close to tifdry with its peak increasing in absolute value as the Grashof
step is vented directly to the main flow. number increases, and that peak develops at approximately the
The effect of the Grashof number on the size of the reverse flg@@me height as the step. In the neighborhood of the sidewall,
region that develops adjacent to the sidewall is shown Figs. 3 af@wever, that trend is reversed and the magnitude of that velocity
4. Results in Fig. 3 represent the linked poifadine) that identify component decreases in absolute value and becomes positive as
the locations where the streamwise velocity compofenis zero the Grashof number increases due to the reverse flow that devel-
on a plane that is near the sidewat/I[(=0.01). Each one of the 0ps in that region. A “jet like” flow develops in the spanwise
distribution of that velocity component near the sidewall, and the
magnitude of the peak in these distributions increases with in-
creasing Grashof numbers. Results for the spanwiselocity

i component indicate that the flow is moving mostly from the wall
1.5F Flow direction [ Flow direction toward the center of the duct, but in the corner near the sidewall

and the stepped wall, the flow moves toward the sidewall to sup-
port the reverse flow that develops in that region. That reverse

\‘/\ Gr=300 flow region increases in size as the Grashof number increases.
PETENEN SrAY A AY

Distributions of Nusselt number (Nuq,,S/k(T,,—Tg), where

.J Ty isthe wall temperature anfy, is the inlet fluid temperatujen

the heated stepped wall are presented in Fig. 5 for different
Grashof numbers. The maximum that occurs near the sidewall can
be clearly seen in that figure. The development of this peak in the
Nusselt number distribution near the sidewall is due to the “jet

3 E Gr=1000 Gr = 2000 like” flow that develops in that region. The peak Nusselt number
0.5 b K
I I i L B 1
I Top view
s [ Flow direction
1.5 Flow direction [
. O - Gr = 4000
0\;1 OS5 Step Gr= 1000 ©r=2000 /r
3 Gr=4000 I Gr =500
05F - Gr

o XIS 0 2 R ) 0
Fig. 3 Effects of Grashof number on size of reverse flow re- Fig. 4 Effects of Grashof number on size of reverse flow re-
gion at a plane z/L=0.01 gion at a plane y/S=1.99
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Fig. 5 Effects of Grashof number on the Nusselt number distribution

occurs in the same general region where the reattachment lengtresttachment length and a maximum in the spanwise distributions
minimum, and it is downstream from the reattachment line. Reatf Nusselt number near the sidewall. The reverse flow region that
tachment lines are included in this figure for comparisons of reldevelops adjacent to the sidewall is not connected to the primary
tive positions. The maximum in that distribution moves upstreanecirculating flow region for the cases of low Grashof number
toward the step and closer to the sidewall as the Grashof numk@r=0.0, and 50Dbut becomes connected to that region at higher
increases. The maximum Nusselt number increases from 1.85Gaishof numbers.

Gr=0, to 2.8 at G+4000.
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