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The Effect of Space-Dependent
Thermal Conductivity on the Steady
Central Temperature of a
Cylinder
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A transformation is presented that enables the center tempera
of a cylinder to be expressed in terms of an integral of the peri
eral temperature distribution for heat conduction with spac
dependent thermal conductivity. Its predictions agree with ex
answers and with numerical solutions obtained with finite diff
ence methods for four test cases. The new result can be appli
a two-dimensional floating random-walk Monte Carlo procedu
which previously was restricted to the case of constant ther
conductivity. @DOI: 10.1115/1.1418701#

Keywords: Conduction, Cylinder, Heat Transfer, Monte Car
Space

Introduction
Accurate prediction of the temperature distribution in a so

requires solution of the heat diffusion equation. This can be d
either with boundary conditions specified or to determine th
from measured temperatures at internal locations, the latte
done by Ganesa-Pillai and Haji-Sheikh@1#. Complex geometries
and boundary conditions often necessitate numerical method
solution whether or not thermal conductivity is constant. T
boundary element~Brebbia@2#! and floating random-walk Monte
Carlo numerical methods~Haji-Sheikh and Sparrow@3#! are
among those that utilize information obtained from exact relati
ships. For these methods to be accurate when thermal conduc
varies with position, it is desirable that relationships for that c
be found.

The same mathematical problem is encountered in related
eas. In Turner’s@4,5# two-dimensional applications of Mont
Carlo techniques to prediction of unsteady piezometric poten
in a water well, it was observed that variation of hydraulic tran
missibility with location ought to be taken into account.

While many analytical solutions are known if thermal condu
tivity k is constant, few are known when it is space dependen
their surveys of possibilities for that case, Bellman@6# and, espe-
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cially, Luikov @7# point out that analytical solutions are genera
possible only for restrictive cases, such as one-dimensional
ductivity variation or conductivity constant in zones. For on
dimensional cases, transformation of the space coordinatex asv
5*dx/k(x) is a useful simplification. In physical terms, it give
the thermal resistance in thex direction. Grigoriu@8# proposed a
floating-random-walk Monte Carlo method based on propertie
Brownian motion and Itoˆ processes that is claimed to be app
cable to space-dependent conductivity, but without examples.

Following a suggestion of Bellman@6#, Munoz and Burmeister
@9# utilized the substitutiony5k1/2T to find that the steady hea
diffusion equation is transformed into¹2y5Fy in which F
5k21/2¹2k1/2. Then, analytical solutions can be obtained ifF is a
convenient function. This substitution was advanced by Cleme
and Budhi @10# who incorporated a Kirchoff transformatio
~Carslaw and Jaeger@11#! to obtain a boundary element metho
for numerical solution of a class of problems in which therm
conductivity is dependent upon space and temperature. Mu
and Burmeister@9# explored the use of their results for a Mon
Carlo numerical procedure. They found that whenF is a function
of radiusr alone in cylindrical coordinates, the center temperat
Tc of a cylinder of radiusR is related to the peripheral temperatu
TR(u) and thermal conductivitykR(u) at angular locationu as

Tc5E
0

2p

TR~u!kR
1/2~u!du/ k̄R

1/2 with k̄R
1/25E

0

2p

kR
1/2~u!du/2p

(1)

The relationship in Eq.~1! between the center and peripher
temperatures, although correct for the stated condition, lacks
erality. For example, the common case of thermal conductiv
varying stepwise as in a layered anisotropic material violates
condition thatF be continuous and depend only upon radius.
the following, another relationship will be derived and its pred
tions will be compared with those obtained by other means.

Formulation
The steady heat diffusion equation in cylindrical coordinates

1

r

]S kr
]T

]r D
]r

1
1

r 2

]S k
]T

]u D
]u

50. (2)

Integration of Eq.~2! with respect tou from 0 to 2p gives

1

r

]S *0
2pkr

]T

]r
du D

]r
1

1

r 2 Fk~2p!
]T~2p!

]u
2k~0!

]T~0!

]u G50.

Since conditions at the beginning and end of an angular trav
are the same, it follows that

dS *0
2pkr

]T

]r
du D

dr
50.5,
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Integration with respect tor from 0 to r gives

E
0

2p

k~r ,u!r
]T~r ,u!

]r
du50. (3)

Equation~3! represents the physical requirement that the sum
steady heat flows into and out of a circle be zero as shown in
1, and the current development could have started with it.

Recasting Eq.~3! as

E
0

2p 1

k21

]T~r ,u!

]r
du50

motivates the coordinate transformations

h5E
0

r dr8

k~r 8,u!
Y E

0

R dr8

k~r 8,u!
(4)

and

f 5E
0

u du8

*0
Rdr8/k~r 8,u8!

Y E
0

2p du

*0
Rdr8/k~r 8,u!

. (5)

With the transformations of Eqs.~4! and ~5!, Eq. ~3! becomes

E
0

1 ]T~h, f !

]h
d f50.

Integration with respect toh from 0 to the outer radius of the
cylinder gives the center temperature in terms of the speci
peripheral temperature as

Tc5E
0

1

TRd f . (6)

Discussion
The functional form off (u) in Eq. ~5! is consistent with the

previously cited observations by Bellman@6# and Luikov@7#. It is
also consistent with the use by Hameed and Lebedeff@12# of the
space variable transformationv5*dx/k(x) in an application of
the integral method to heat conduction in media in which therm
conductivity varies one-dimensionally with position. Patanka
@13# use of the harmonic mean of thermal conductivitykeff be-
tween nodes in a finite difference numerical method as

2/keff,i51/ki 11/211/ki 21/2

is similar. Further support for the functional form off (u) is ob-
tained from a finite difference formulation to determine the cen
temperature of a cylinder of specified peripheral temperature
depicted in Fig. 2. Use of only three control volumes around
central control volume for simplicity yields

Fig. 1 Conductive heat flux q across a differential element of
area rd u on the periphery of a cylinder
196 Õ Vol. 124, FEBRUARY 2002
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This finite difference expression suggests the continu
equivalent

TcE
0

2p 1

*0
R

dr8

k~r 8,u!

du5E
0

2p

TR~u!
1

*0
R

dr8

k~r 8,u!

du,

which is consistent with Eq.~6!. If interior control volumes are
used between the central and the peripheral control volume
similar but more complex expression is obtained that conta
additional, small terms that represent heat flow in the angu
direction.

The first demonstration of the predictive ability of the formul
tion in Eq. ~6! is for the one-dimensional case of a slab of tw
layers, each of thicknessL. The temperature distribution is give
by

dS k
dT

dxD
dx

50, T~2L !5TH , T~L !5TL ,

k5H ko~11a!, x,0

ko otherwise
.

The solution is

T5H TH2~TH2TL!~x/L11!/~21a!, x,0

TL2~TH2TL!~x/L21!~11a!/~21a! otherwise
.

(7a)

The temperatureTc at x50, the interface between the two layer
is

Tc5@~11a!TH1TL#/~21a!. (7b)

To compare the prediction of Eq.~6!, it is first recognized thatx
5r cos(u) for a cylindrical coordinate system centered atx50.
Then, the peripheral temperature at a constant radial dista
equal to the layer thickness, from the interface between the
layers is obtained from Eq.~7a! to be

Fig. 2 Control volumes for determination of the central tem-
perature of a cylinder in terms of the peripheral temperatures
by a finite difference method
Transactions of the ASME
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TR5H TH2~TH2TL!@11cos~u!#/~21a!, p/2,u,3p/2

TL2~TH2TL!~11a!@cos~u!21#/~21a! otherwise
.

(8)
For this problem, Eq.~5! gives

f 5H u/@~21a!p#, 0<u,p/2

@~11a!u2ap/2#/@~21a!p#, p/2<u,3p/2

~u1ap!/@~21a!p#, 3p/2<u,2p

. (9)

Use of Eqs.~8! and ~9! in Eq. ~5! gives

Tc5E
0

2p

TR~u!
1

p~21a! H 1, 2p/2<u,p/2

11a, p/2<u,3p/2 J du

5@~11a!TH1TL#/~21a!,

which is identical to the exact answer in Eq.~7b!. The earlier
prediction of Eq.~1! is erroneous for this case in whichF is not
solely a function of radius.

The second case is one for which Eq.~1! is exact. In this case
the thermal conductivity variation isk5@21(r /R)cosu#2, for
which F50. Application of Eq.~5! results inf 5(2u1sinu)/4p
which, when used in Eq.~6! with TR(u)5100(21cosu), yields

Tc5
25

p E
0

2p

@414cos~u!1cos2~u!#du5225.

Munoz and Burmeister demonstrated by comparison with a fi
difference numerical solution that this is the correct value for
center temperature.

A third case for whichF is not solely a function of radius
has the thermal conductivity uniform in each of two zones
described by

k5H 1, 0.3<r ,0.5, 0<u<p

5 otherwise

for which Eq.~6! gives

f 5H 5u/14p, 0<u<p

5/1419~u/p21!/14 otherwise
.

With TR5100(21cosu) Eq. ~6! then gives the center temperatu
as 200, agreeing exactly with the value obtained with a fin
difference numerical method by Munoz@14#.

Use in a Monte Carlo Procedure
The result of the present analysis is Eq.~6! which can be recas

into the form

Tc5E
0

2p

TR~u!@d f /du#du. (10)

In this form it can be seen thatTc is the expected value of a serie
of experiments for which the probability distribution function fo
an outcomeTR(u) within the range 0<u<2p is d f /du. From this
it follows that the cumulative distribution function isf (u).

Equation ~10! can be used in a two-dimensional floatin
random-walk Monte Carlo procedure.

In general, because the thermal conductivity dependence u
location would not be convenient, evaluation of the cumulat
distribution functionf in Eq. ~5! would have to be accomplishe
numerically.

Conclusion
A transformation has been found that enables the center

perature of a cylinder to be expressed in terms of an integral of
peripheral temperature distribution for heat conduction w
space-dependent thermal conductivity. The predictions of the
result agree with exact answers and with numerical solutions
tained with finite difference methods for four test cases. The n
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result can be applied to a two-dimensional floating random-w
Monte Carlo procedure which previously was restricted to
case of constant thermal conductivity.

Nomenclature

a 5 constant for conductivity variation, see Eq.~7!
f 5 transformed angular coordinate, see Eq.~5!

F 5 conductivity function
k 5 thermal conductivity

kR 5 thermal conductivity at radiusR averaged over a circle
L 5 slab thickness
q 5 radial conductive heat flux,q52k]T/]r

r 8 5 dummy radial coordinate and position
r 5 radial coordinate and position
R 5 cylinder radius
T 5 temperature
x 5 space coordinate and position

Greek Symbols

h 5 transformed space coordinate, see Eq.~4!
u 5 angular coordinate and position
p 5 natural number,p53.1415 . . .
v 5 transformed space coordinate

Subscripts

c 5 at the center
eff 5 effective value
H 5 high
i 5 index

L 5 low
o 5 at the center
R 5 at radial distanceR
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Effective Radiative Properties of a
Cylinder Array

Chongshan Zhang
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Rehovot 76100, Israel
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Fully anisotropic problems are found where the radiative intera
tion is due to small-scale elements that lack spherical symme
for example: fibrous insulation, finned heat sinks, plant canop
and some solar energy absorbers. We present the effective
optical properties of a PM composed of small-scale opaque
inders. The properties are derived from data generated by deta
Monte-Carlo numerical experiments. The data reduction pro
dure is relatively simple and does not require a full solution a
optimization of the Radiative Transfer Equation. Benchmark ca
are presented, comparing an exact solution (with geometric de
of the cylinder array) and an approximate solution using a co
tinuous PM model with the effective volumetric properties.
@DOI: 10.1115/1.1423317#

Keywords: Cylinder, Heat Transfer, Modeling, Numerical Met
ods, Properties, Radiation

1 Introduction
Treatment of radiative transport in Participating Media~PM! is

usually limited to semianisotropic media, i.e., volumetric abso
tion and scattering coefficients that are independent of direct
and a degenerate scattering phase function depending only o
angle between the incident and outgoing radiation. In a fully
isotropic medium, the volumetric absorption and scattering co
ficients depend on the direction of incident radiation, and the s
tering phase function depends separately on both the inciden
outgoing directions. A fully anisotropic PM can be a useful mod
in problems of radiation transport through media contain
small-scale interacting elements that lack spherical symmetry
are not randomly oriented, for example fibrous insulation@1#,
finned heat sinks@2#, plant canopies@3#, and solar absorbers@4,5#.

Producing a useful PM model of such a system requires find
the bulk optical properties of the equivalent PM. The optical pro
erties often cannot be predicted from first principles and nee
be derived from experimental data. A sample of the medium
exposed to a known incident radiation, and outgoing radiat
fluxes in several directions are measured. To analyze the resu
guess for the optical properties is provided; the direct problem
solved by some approximation of the Radiative Transfer Equa
~RTE!; and the outgoing flux results are compared to the exp
mental measurement. The optical properties are then adjusted
the computation is repeated within an optimization process, u

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division Septembe
2000; revision received August 20, 2001. Associate Editor: D. A. Kaminski.
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reasonable agreement is reached@6#. This can be a resource
consuming process due to the need to solve the RTE repeate

Fully anisotropic media require a large number of parameter
describe the optical properties, and a large optimization prob
with an embedded RTE solver may become prohibitively exp
sive. In a recent contribution@7# we have proposed an alternativ
method requiring only the direct solution of algebraic equatio
In the current paper, this procedure is applied to a specific
ample of a complex medium modeled as an anisotropic PM.
model problem is a volume containing a regular array of cylind
@2,3,5#. The anisotropy is due to the difference between the dir
tion along the cylinders and the directions in the plane perp
dicular to the cylinders. The effective optical properties of th
medium were derived from the results of a numerical experime
The effective properties were then used to simulate a benchm
problem, and the results were compared to a reference soluti

2 Numerical Experiment
The sample was a cube containing a section of the cylin

array ~Fig. 1!. The array pitch is three cylinder diameters in bo
directions. The cylinders can be black, ideal diffuse reflectors
gray absorbing~surface absorptivity 0.4! and diffusely reflecting.

The approach is based on the division of directional space
discrete solid angle intervals, following the Finite Volume meth
@8,9#. For convenience, we refer to these solid angle intervals
ordinates~although they are not identical to the classical definiti
from the Discrete Ordinate Method!. Each of the optical proper-
ties has a distinct value within each ordinate, so that the num
of unknowns is related to the number of ordinate directions c
sen. The polar and azimuthal angles were divided into equa
tervals. The directional grid resolution varied between 434 and
1638 ~16 division inf, 8, in u!. The experiments were performe
numerically, using a Monte Carlo ray tracing procedure. Sim
lated incident light was introduced within a single ordinate dire
tion, and outgoing radiation was measured for each outgoing
dinate. The procedure was repeated with the incident light com
within other ordinates.

The analysis method of the experimental results was prese
in detail in @7#. The general Finite Volume formulation of Fiter
man et al.@10# was used, producing a coupled set of ordina
differential equations. The discrete RTE was integrated over
volume of the sample to produce integral energy balance eq
tions. This volume averaging required several simplifying a
sumptions as described in@7#. The transmitted and the scattere
contributions to the outgoing radiation were separated, and
extinction coefficient for each ordinate direction was found fro
an approximate equation involving only the transmitted contrib

1,
Fig. 1 Geometry of the cylinder array
2002 by ASME Transactions of the ASME
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tion. The phase function was eliminated next by summing eq
tions for all outgoing directions and using the energy conserva
property of the phase function. This elimination produced eq
tions for the scattering coefficient in each of the ordinate dir
tions. Finally, given the extinction and scattering coefficients, a
of equations for the phase function can be solved. This proce
required solution of sets of algebraic equations, without the n
for sophisticated solution methods of the RTE, and without ite
tive optimization.

3 Properties of the Cylinder Array
Figure 2 shows the distribution of the extinction coefficient

the array for a coarse and a fine directional grid. Each recta
corresponds to the solid angle range of an ordinate. The extinc
is low in directions along the cylinders’ axis~small and large polar
angleu!, and high in directions perpendicular to the axis~inter-

Fig. 2 Anisotropic extinction coefficient as a function of polar
and azimuthal angles: „a… ordinate resolution 4 Ã4 and „b… or-
dinate resolution 16 Ã8.

Fig. 3 „a… Phase function of incident ordinates 3 pÕ8ËuËpÕ2,
pÕ4ËfË3pÕ8, ordinate resolution 16 Ã8; and „b… cross-section
in the outgoing direction 3 pÕ8ËuËpÕ2.
Journal of Heat Transfer
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mediateu!. The variations with the azimuthal anglef, visible in
the high-resolution solution, correspond to the angles where
cylinders are aligned~minimal extinction! and staggered~maxi-
mum extinction!. Each ordinate in the coarse grid solution is clo
to the average of the corresponding ordinates in the fine grid
lution, with an average error of 0.5 percent. The optical proper
at different resolutions are then consistent. The distribution of
scattering coefficient is similar to that of the extinction coefficie
The scattering albedo~ratio of scattering coefficient to extinction
coefficient! is nearly constant over all ordinates, with an avera
value of 0.63, which is very close to the real surface reflectivity
0.6.

Figure 3 presents selected distributions of the phase funct
High phase function values are found in the azimuthal direct
opposite to the incident direction, representing strong backw
scattering. There is no ‘‘memory,’’ however, of the incident pol
angle since reflection from the cylinders is diffuse. Therefore,
medium is not truly backward scattering and cannot be mode
as a semi-anisotropic medium. The minima of the phase func
are negative. This is clearly unphysical, and can be an artifac
the simplifications made in order to model the average scatte
flux @7#.

The statistical error of the Monte Carlo process is the analog
measurement errors in a physical experiment. The number of
was changed between 104 and 106 for the case of 16 ordinate
(434). The largest error in the optical properties with 104 rays
was 4 percent. 105 rays were used in the results presented he
with errors of at most 1 percent.

Fig. 4 Benchmark results: convergence of errors in absorbed
power with number of ordinates, for „a… absorbing cylinders,
„b… reflecting cylinders „scattering medium …, and „c… absorbing
and reflecting cylinders
FEBRUARY 2002, Vol. 124 Õ 199
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The effective optical properties should be independent of
size of the sample if the PM model is valid. The size of the sam
was increased by changing the number of cylinder rows betwe
and 6. The optical properties showed very little variation, indic
ing that even three rows produce a good representation of
behavior of the entire medium.

4 Benchmark Results and Discussion
The benchmark case is defined as a cubic box containing tw

rows of cylinders for an overall size of 36 diameters. Wall 1 of t
cube aty50 ~Fig. 1! is hot, while all other walls and the cylinder
are cold. All walls are black. We measure the distribution of
radiation emitted from wall 1 that is absorbed in the other wa
and in the cylinders~i.e., the medium filling the box!. The top and
bottom ~walls 2 and 4! are symmetric and are counted togeth
The sidewalls 5 and 6 are also symmetric. A reference solu
was computed by detailed ray tracing of the full geometry of
cylinder array. The PM model results were computed by defin
a continuous PM in the same volume as the cylinder array, u
the effective optical properties that were presented in the prev
section, and then performing ray tracing through the effective c
tinuous medium.

Figure 4 shows the results for three cases: black cylinders~ab-
sorbing medium!, reflective cylinders~scattering medium!, and
cylinders that are both absorbing and reflecting. The error is
fined as the difference between the approximate solution~PM
model using the effective properties! and the reference solution
The errors show convergence as a function of the number o
dinates in all three cases. Convergence is best for the abso
case, but not as good for the two cases with a scattering com
nent. Nevertheless, the errors for a 1638 directional resolution
were less than 10 percent even in the presence of scatte
indicating that the solutions are useable even though not v
accurate.

The representation of scattering seems to cause larger erro
well as some negative values of the phase function. This is p
ably due to the simplifying assumptions that were used in
derivation of the scattering coefficients and the phase function@7#.
Additional work is needed on improving the procedure for der
ing the scattering properties. Nevertheless, as a first attemp
solve a complex problem that was not previously treated,
present results are a reasonable approximation.
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An analytical solution is reported for the temperature distributi
in finite span thin-gap Couette devices which accounts for visc
dissipation. Taken in conjunction with an established solution
the stable velocity profile, this result describes the standard
perimental configuration where no external heat fluxes are
plied. We discuss physical aspects as well as conditions for w
classical one-dimensional theory should be replaced by
present result. @DOI: 10.1115/1.1418373#

Keywords: Analytical, Conduction, Flow, Heat Transfer, Lam
nar

1 Introduction
Couette flow devices@1# utilize the concept of two coaxial cyl

inders enclosing a working fluid. Motion is sustained via sh
forces generated by rotating one of the cylinders. In ‘‘thin-ga
configurations, the ratio of gap size to inner cylinder radius
vanishingly small and fluid response is independent of which
inder functions as the rotor. The basic design has been us
many practical applications, including viscometry@2# and fluid
processing@3#. Moreover, it has evolved as a standard platform
studying fundamental phenomena, such as laminar trans
@4–6# and viscous heating@7–10#.

Couette devices are typically modeled using an idealized ge
etry where cylinder spans are considered infinite@4–11#. Span-
wise effects imparted on the ends are neglected and the ta
determining stable base flow and temperature distributions,
the Couette problem, is reduced to one dimension. Here, vel
profiles assume the classical linear ‘‘constant shear’’ form
temperature profiles are parabolic if viscous heating is consid
@11#. This treatment represents a significant theoretical simplifi
tion. Yet it is well-known that spanwise effects are appreciabl
devices having small to moderate cylinder spans. This has
shown by numerous experimental investigations using aspec
tios on the order of 10 or less@12–14#. Thus, there exists a clas
of instruments for which idealized theory is clearly not sufficie
@2,12#.

An analytical solution for the Couette velocity profile in thi
gap devices having finite aspect ratios has long been avai
@15#. In the absence of viscous dissipation, the thermal proble
trivial since temperature can be inferred directly from the velo
profile. However, for non-trivial dissipation, e.g., Brinkman nu
bers in the 1021 to 102 range@7#, heat generation terms in th
temperature equation prevent leveraging the existing model

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division, July 27, 20
revision received June 25, 2001. Associate Editor: J. Georgiadis.
2002 by ASME Transactions of the ASME
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present here an analytical solution for this case. In light of pre
ous studies of viscous dissipation@7–10#, we consider the imple-
mentation in which there are no externally applied heat fluxes

2 Problem Formulation
Let gap size and total span beH andL, respectively~whereL is

finite!. Also, define the translation velocity of the inner cylind
surface asuw and takeTw to be a reference temperature. Flu
properties are constant densityr, kinematic viscosityn, and ther-
mal conductivityk. Pertinent non-dimensional parameters are
aspect ratio f5L/H and the Brinkman number B
5@(rnuw

2 )/(kTw)#. The Reynolds number is relevant only to th
extent that it is below a critical value for the onset of flow ins
bility, a prerequisite for the existence of stable Couette flow. T
seven parameter dimensional system therefore reduces to a
parameter dimensionless one defined by parameter space (Bf).
The parallel Couette flow model applied to the Navier-Stok
equations yields@16#

¹2u50, (1)

and

¹2T52Br F S ]u

]yD 2

1S ]u

]zD 2G , (2)

where u and T are the non-dimensional streamwise veloc
component and the temperature distribution in the cross-sec
respectively. These variables have been non-dimensionalize
u5u* /uw and T5(T* 2Tw)/Tw , where u* and T* are corre-
sponding dimensional quantities. Independent variables are
dimensionalized usingH as a length scale. The dimensionle
Laplacian operator¹2 has the form]2/]y21]2/]z2, wherey and
z represent the directions normal and tangential to the mov
surface, respectively. Boundary conditions governing the fl
profile are

u50 at z50, z5f, y51 and u51 at y50.
(3)

Boundary conditions for temperature are

T50 at z50, z5f, y50, and y51, (4)

that is, all surfaces of the instrument remain at the reference t
peratureTw . Equation~4! represents the standard case in wh
no external heat fluxes are applied@7–10#.

The exact solution for Eqs.~1! and ~3! can be written for the
present coordinate system as@15#

u~y,z!5
4

p (
m51

`
sin~2m21!pz/f sinh~2m21!p~12y!/f

~2m21!sinh~2m21!p/f
.

(5)

Using Eq.~5!, ]u/]y and]u/]z are determined and their squar
are used to obtain the viscous dissipation source term in Eq.~2!.
This procedure yields

¹2T52
16 Br

f2 (
m51

`

(
n51

`
1

sinh gm sinh an

3@sin gzmsin azn coshgm~12y!coshan~12y!

1cosgzm cosaznsinh gm~12y!sinh an~12y!#, (6)

where gm5(2m21)p/f and an5(2n21)p/f. Equations~4!
and~6! govern the viscous dissipation problem we desire to so
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3 Solution Procedure
Equation~6! is not readily separable. We therefore employ t

integral transform@17,18#

T̄~y,b j !5E
0

f

Z~b j ,z8!T~y,z8!dz8 (7a)

and

T~y,z!5(
j 51

`
Z~b j ,z!T̄~y,b j !

*0
fZ2~b j ,z8!dz8

, (7b)

where the overbar notation represents a transform inz, eigenval-
ues are given byb j , andZ(b j ,z) are corresponding eigenfunc
tions. As boundary conditions are of the Dirichlet type, eige
related quantities can be obtained explicitly@19# and are specified
by the expressionsb j5 j p/f andZ(b j ,z)5sin b j z.

Equation~6! is transformed using Eq.~7a!. Regarding the La-
placian operator,]2T/]y2 and]2T/]z2 transform, respectively, as
d2T̄/dy2 and 2b j

2T̄. It is necessary to transform the right han
side of the equation on a term-by-term basis. Constants and te
that depend only ony can be moved outside the transformatio
integral and the equation can be written

d2T̄

dy2
2b j

2T̄52
16 Br

f2 (
m51

`

(
n51

`
1

sinh gmsinh an

3Fcoshgm~12y!coshan~12y!

3E
0

f

Zj8sin gmz8sin anz8dz8

1sinh gm~12y!sinh an~12y!

3E
0

f

Zj8cosgmz8cosanz8dz8G , (8)

whereZj8 represents a shorthand notation forZ(b j ,z8). Evaluat-
ing the integrals, we find

d2T̄

dy2
2b j

2T̄52
16 Br @12~21! j # j

fp

3 (
m51

`

(
n51

`
1

coshbmnp/f2coshamnp/f

3Fcoshbmnp~12y!/f

j 22amn
2

2
coshamnp~12y!/f

j 22bmn
2 G ,

(9)

where amn52(m2n) and bmn52(m1n21). Boundary condi-
tions transform asT̄50 at y50 andy51.

The problem is now posed in terms of non-homogeneous o
nary differential equations forT̄. Since coefficients are constan
the method of partial fractions may be used to solve forT̄ as the
sum of a homogeneous solutionT̄H and a particular solutionT̄P

@20#. The homogeneous component is of the formT̄H
5c1 coshb j y1c2sinh b j y. If f (y) andD are taken to represen
the right hand side of Eq.~9! andd/dy, respectively, the equation
for the particular solution may be written symbolically as (D2

2b j
2)T̄P5 f (y). Applying the method of partial fractions result

in T̄P5@(D2b j )
212(D1b j )

21# f (y)/(2b j ). Integrating this
expression and handling evaluation once again on a term-by-
basis for the double series embedded inf (y), we obtain after
considerable derivation the particular solution
FEBRUARY 2002, Vol. 124 Õ 201



T̄p5
16 Br @12~21! j # j f

p3 (
m51

`

(
n51

`
coshbmnp~12y!/f2coshamnp~12y!/f

~coshbmnp/f2coshamnp/f!~ j 22bmn
2 !~ j 22amn

2 !
. (10)
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Reconstructing the general solution asT̄5T̄H1T̄P , the integra-
tion constantsc1 and c2 can be evaluated using the transform
boundary conditions. The result can be written as

T̄~y,b j !5
16 Br @12~21! j # j f

p3 (
m51

`

(
n51

`
1

~ j 22bmn
2 !~ j 22amn

2 !

3Fcoshbmnp~12y!/f2coshamnp~12y!/f

coshbmnp/f2coshamnp/f

2
sinh j p~12y!/f

sinh j p/f
G . (11)

To obtain the physical solutionT(y,z), the inverse transform in
Eq. ~7b! is applied to Eq.~11!, yielding

T~y,z!5
64 Br

p3 (
j 51,3,5, . . .

`

j sin j pz/f

3 (
m51

`

(
n51

`
1

~ j 22bmn
2 !~ j 22amn

2 !

3Fcoshbmnp~12y!/f2coshamnp~12y!/f

coshbmnp/f2coshamnp/f

2
sinh j p~12y!/f

sinh j p/f
G . (12)

Trivial modes represented byj 52,4,6, . . . , have been removed.

4 Results
The Brinkman number appears simply as a scaling factor

the magnitude ofT in Eq. ~12!, while the aspect ratio is embedde
within the series. The ratioT/Br therefore describes the topolog
of all possible temperature profiles associated with stable fl
Figure 1 shows several examples. Small values off yield asym-
metries where maxima are shifted toward the moving surfa
This behavior arises in response to the fact that velocity gradie
especially]u/]y, increase neary50 and decrease neary51 asf
is reduced. These gradient shifts have a commensurate effect
the dissipation source term in Eq.~6!. The degree of asymmetr
lessens as the aspect ratio is increased. In the limitf→`, a para-
bolic profile is obtained abouty51/2 as predicted by standar
one-dimensional theory@11#.

Fig. 1 Thermal shape profiles „TÕBr … at the device centerline
„zÄfÕ2… for aspect ratios 1 Õ2, 1, 2, and `
202 Õ Vol. 124, FEBRUARY 2002
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While Fig. 1 suggests rapid convergence to idealized behav
it does not quantify error for finite values off when the span is
approximated as being infinite. Here, we define an error measu«
in terms of r.m.s. differences between the idealized profiles@11#,
u512y andT5Br•y(12y)/2, and their two-dimensional coun
terparts in Eqs.~5! and ~12!. Figure 2 shows that bothu and T
converge logarithmically as functions off to their one-
dimensional forms. Notice that contours foru and T coincide at
Br55.5. The hydrodynamic component governs error
0<Br<5.5 because it represents the lower bound for error. Th
mal curves for Br,5.5 therefore have no physical significanc
Conversely, increased dissipation governs the error for Br.5.5.
To a good approximation (L`'3.5%), results in Fig. 2 are de
scribed by

«50.16 Bre21.568f, (13)

where f>1/2 ande is the Euler number. That is, Eq.~13! de-
scribes the r.m.s. error when using the idealized thermal profil
approximate Eq.~12! and further describes the error when app
ing the corresponding hydrodynamic idealization to approxim
Eq. ~5! if Br is set to 5.5.

Because of its logarithmic nature, the actual error will nev
identically vanish. However, one can choose an appropriate e
tolerance below which application of idealized theory is reas
ably justified. Strictly speaking, the selected tolerance applie
stable flow only. Any case involving additional higher-order flo
modes would likely add a numerical approach and formaliz
benchmarking would then be required@21#. One can err conser
vatively by choosing a sufficiently low tolerance, for example,«
51025. A neutral curve can then be found which separates
one and two-dimensional models by plotting the locus of points
~Br,f! space for this value. This procedure results in the m
shown in Fig. 3. The vertical line represents the lower er
bound, which is valid for Brinkman numbers up to 5.5. He
one-dimensional modeling is justified for approximatelyf>7.3.
For Br.5.5, thermal effects govern the problem and the o
dimensional simplification may only be applied at progressiv
larger aspect ratios. The thermal curve has a steeply increa
slope implying that the required value off is only a weak func-
tion of the Brinkman number. This can also be inferred from t
close spacing of thermal contours in Fig. 2.

Fig. 2 Convergence rate of velocity and temperature profiles
at the device centerline „zÄfÕ2… to their one-dimensional
forms. Dashed line represents coincident contours for tem-
perature at Br Ä5.5 and velocity
Transactions of the ASME
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Equations~5! and~12! are predicated upon constant fluid pro
erties. Since the maximum dimensionless temperature rise sh
in Fig. 1 is identical for both finite and infinite configurations, th
range of applicability of the current model is essentially the sa
as that for one-dimensional theory@11#. Properly extending the
map in Fig. 3 to significantly higher values of Br would requi
one to consider variable properties, especially viscosity. T
would introduce additional material parameters to the proble
Work based upon idealized theory has focused on this is
@7–10#, however, we are not aware of any corresponding stud
relating to finite devices.

5 Conclusion
We have derived the dissipation-dependent temperature d

bution for thin-gap Couette flow and used it to analyze finite
struments. This solution can be applied in ways beyond wha
discussed here, for example as a numerical test case and/or i
condition for codes designed to simulate heat generating flow

Br 5 Brinkman number@(rnuw
2 )/(kTw)#

H 5 gap size@m#
L 5 cylinder span@m#
T 5 dimensionless temperature

Tw 5 reference temperature@K#
Z 5 eigenfunction

j ,m,n 5 eigenmodes
k 5 thermal conductivity@W/mK#
u 5 dimensionless velocity component

uw 5 translation speed of rotor surface@m/s#
y,z 5 dimensionless Cartesian coordinates
b j 5 eigenvalues
« 5 r.m.s. error
f 5 aspect ratio@L/H#
n 5 fluid kinematic viscosity@m2/s#
r 5 fluid density@kg/m3#
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Natural Convection in a Cylindrical
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A numerical study has been made to analyze the effects of a
tropic permeability and thermal diffusivity on natural convectio
in a heat generating porous medium contained in a vertical cy
drical enclosure with isothermal wall and the top and botto
perfectly insulated surfaces. The results show that the anisotro
influence the flow field and heat transfer rate significantly. T
non-dimensional maximum cavity temperature increases with
crease in permeability ratio. For aspect ratio greater than
equal to two, the nondimensional maximum cavity tempera
increases with an increase in the thermal diffusivity ratio. F
aspect ratio equal to unity, there exists a critical value of therm
diffusivity ratio at which the maximum cavity temperature is
minimum. This critical value increases with an increase in t
value of anisotropic permeability ratio. Based on a paramet
study correlations for maximum cavity temperature and avera
Nusselt number are presented.@DOI: 10.1115/1.1418700#
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Introduction
Convective heat transfer in volumetrically heated porous en

sures is of fundamental importance in a number of technolog
applications such as storage of agricultural products, fermenta
process in food industries, packed-bed chemical reactors, nu
reactor assembly and is also of interest in environmental scie
and geophysics. Much of the work on this topic has been c
cerned with an isotropic porous medium. Notable among them
the works of Haajizadeh et al.@1# and Prasad@2#, on vertical
rectangular cavities, Stewart and Dona@3#, Prasad and Chui@4#
and Rao and Wang@5# on vertical cylinders.

However, in many applications, porous materials are an
tropic, for example, drying of preferentially oriented food grain
columnar dendritic structures formed during solidification
multi-component mixtures, tubular packed bed reactors and
bundles in a nuclear reactor core. Due to the preferential orie
tion of the porous matrix in the above applications the permea
ity and equivalent thermal conductivity of the porous matrix a
different in different directions. Only recently, researchers ha
started investigating natural convection in heat generating an
tropic porous media. Royer and Flores@6# considered natural con
vection in an anisotropic porous layer inter-bedded horizont
into a homogeneous impermeable medium enclosed in a rec
gular enclosure. Parthiban and Patil@7# studied onset of convec
tion in a horizontal layer of heat generating anisotropic poro
medium.

The objective of the present work is to study natural convect
in a vertical cylindrical enclosure filled with a heat generati
porous medium, which is both hydrodynamically and therma
anisotropic. A porous medium is said to be hydro-dynamica
anisotropic when it has different permeabilities in different dire
tions whereas it is said to be thermally anisotropic when it
different thermal diffusivities in different directions.

Mathematical Formulation
The physical system under consideration is a vertical cylin

filled with a porous medium. The wall of the cylinder is consi
ered to be isothermally cooled atTc while the horizontal surfaces
are adiabatic. The porous matrix is both hydrodynamically a
thermally anisotropic, and is saturated with an incompress
fluid. The principal directions of the permeabilities~K! and effec-
tive thermal conductivities~k! coincide with the horizontal~r! and
vertical ~z! coordinate axes and hence the flow is assumed to
two-dimensional. The thermophysical properties of the fluid a
solid matrix are constant except for the fluid density variation
the body force term, i.e., the Boussinesq approximation is
ployed. The convecting fluid and the porous matrix are in lo
thermodynamic equilibrium. Darcy’s law is assumed to be va
The heat is generated by a uniformly distributed energy sourc

The governing equations for axisymmetric, steady-flow throu
the porous medium then are

]

]r
~ru8!1

]

]z
~rv8!50 (1)

u852
Kr

m S ]p

]r D (2)

v852
Kz

m F]p

]z
2gb~T2Tc!G (3)

u8
]T

]r
1v8

]T

]z
5a rF1

r

]

]r S r
]T

]r D G1az

]2T

]z2 1
q-

rc
, (4)

whereKr andKz are the permeability of the porous medium r
spectively along ther and z directions; a r5kr /rc and az
204 Õ Vol. 124, FEBRUARY 2002
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5kz /rc are the thermal diffusivity of the porous medium respe
tively along ther andz directions. Asr andc are assumed to be
constant,a r andaz are essentially the ratios of thermal condu
tivities in the r and z directions. In the aboveu8521/r ]c8/]z
and v851/r ]c8/]r . By eliminating the pressure term from th
momentum equations by cross-differentiation, the governing E
~1!–~4! may be rewritten in the non-dimensional stream-functio
temperature form as

K*
]

]R F 1

R

]c

]RG1
1

A2

]

]Z F 1

R

]c

]ZG5Ra*
]u

]R
(5)

]c

]R

]u

]Z
2

]c

]Z

]u

]R
5A

]

]R S R
]u

]RD1
1

lA

]

]Z S R
]u

]ZD12AR.

(6)

The dimensionless variables used in writing the above equat
are: R5r /r 0 , Z5z/H, A5H/r 0 and c5c8/a r r o . Since there
is no obvious reference temperature difference available,
temperature is non-dimensionalized using the volumetric h
generation rate asu5(T2Tc)/(q-r 0

2/2kr). As a result of sym-
metry about the axis of the cylinder,r 50, Eqs.~5! and ~6! are
solved with the following hydrodynamic and thermal bounda
conditions:

R50, c50,
]u

]R
50; R51, c50, u50;

Z50, c50,
]u

]Z
50; Z51, c50,

]u

]Z
50.

Equations~5! and~6! are solved by the finite volume method a
outlined by Gosman et al.@8#. The discretization in this scheme i
equivalent to central differences for all terms except the conv
tive term in the energy equation, for which second upwind diff
encing has been employed. To solve the system of algebraic e
tions thus obtained, SOR point iterative solver is used that ma
use of the new values as soon as they are available. A non-uni
grid field, varying in the form of geometric progression, with ve
fine grids near the central line and the wall is employed. T
adequacy of the grid is verified by comparing the results co
puted with a 1013101 grid with those obtained using a 1513151
grid. The difference in maximum non-dimensional temperat
and in maximum stream function value for the two grid sizes
within 1 percent. Hence grid size of 1013101 has been used fo
the parametric study. The energy equation is under relaxed at
Rayleigh numbers. A convergence criterion of 1023 percent
change in bothc and u at all nodes in the domain has bee
selected to terminate the iterative scheme.

Results and Discussion
Numerical results for the streamlines, isotherms and Nus

numbers are obtained for 0.1<K* <10.0, 0.1<l<10.0, 1<A
<5 and 102<Ra* <104. The range of permeability and therma
diffusivity ratios are chosen based on the work of Neale@9#.

Validation. The results obtained by the present computatio
scheme are compared with the results of Rao and Wang@5# and
Prasad and Chui@4# in Tables 1 and 2 respectively, which are fo
an isotropic porous medium. The present results are found to b
good agreement with them.

Streamlines and Isotherms. For the case of anisotropic hea
generating porous medium representative streamlines and
therms are shown in Figs. 1 and 2 forA52 and Ra*5500. The
flow consists of an asymmetric single cell rotating slowly in t
clockwise direction. Figure 1 brings out the effect of permeabil
ratio on the flow pattern. Figure 1~b! illustrates the streamlines
Transactions of the ASME
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Table 1 Comparison of results with those of Rao and Wang †9‡

Table 2 Comparison of results with those of Prasad and Chui
†8‡

Fig. 1 Streamline and isotherm plots for different permeability
ratios keeping the thermal diffusivity ratio constant at lÄ1
Journal of Heat Transfer
and isotherms for the isotropic case~i.e., K* 5l51.0!. Sharp
gradients in velocity and temperature are observed near the
thermally cooled side wall. Temperature stratification is observ
in the upper portion of the cylinder. Figure 1~a! shows the stream-
lines and isotherms forK* 50.1 andl51.0 ~i.e., the permeability
in the vertical direction is greater than that in the horizontal dire
tion!. The buoyancy induced flow along the isothermal cold w
is much stronger for this case than forK* 51.0. The flow chan-
nels along the side wall. When compared to isotropic case
extent of thermally stratified zone increases.

The opposite extreme is shown in Figure 1~c!. For K* 510.0
and l51.0, no sharp gradients in velocity and temperature
observed near the side wall, while the horizontally flowing flu
channels along the top and bottom adiabatic walls. This pra
cally induces the so called ‘‘plug flow’’ in the fluid. Due to the
relatively low permeability in the vertical direction, the intensit
of natural convection flow is very weak as compared to isotro
permeability case. Also the flow outside the ‘‘horizontal channe
is very nearly parallel to the vertical wall. Once the fluid reach
the top or bottom adiabatic wall, it bends sharply and merges i

Fig. 2 Streamlines and isotherms for different thermal diffu-
sivity ratios keeping the permeability ratio constant at K *Ä1
FEBRUARY 2002, Vol. 124 Õ 205
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the fast flowing fluid in the horizontal channels. Consequently,
isotherms are almost vertical, indicating that heat transfer ac
the enclosure is mostly by conduction.

Figure 2 shows the effect of thermal diffusivity ratio via strea
line and isotherm plots forK* 51.0. Forl50.1 ~Fig. 2~a!!, the
thermal diffusivity is much higher in the vertical direction than
the horizontal direction. Hence the temperature gradient in
vertical direction is observed to be smaller than that forl51.0
case. However, the flow intensity is slightly higher than that
l51.0. As shown in Fig. 2~b! and 2~c!, increase in thermal diffu-
sivity ratio has virtually no effect on the flow pattern. Due to t
relatively low thermal diffusivity in the vertical direction, the tem
perature stratification in the vertical direction is stronger
l510.0 than that forl51.0.

Centerline Temperature Distribution. Figure 3 presents the
temperature distribution on the centerline of the cylinder for th
different permeability ratios while keeping the diffusivity rat
constant atl51 and also for three different thermal diffusivit
ratios while keeping the permeability ratio constant atK* 51.0.
As the permeability ratio decreases~i.e., the permeability in the
vertical direction is larger than that in the horizontal direction!, the
dimensionless temperatureuo is observed to be less than that
the isotropic case due to stronger buoyancy. As the permeab
ratio increases~i.e., the permeability in the horizontal direction
larger than that in the vertical direction!, the dimensionless tem
peratureuo is found to be higher than the isotropic case. Also,
larger the permeability ratio, the larger is the temperature grad
]uo /]Z at any heightZ.

When the thermal diffusivity ratio is above unity, the dime
sionless temperatureuo is observed to be less than the isotrop
case everywhere except in a small region near the top adia
wall. Due to the relatively smaller thermal diffusivity in the ve
tical direction, there exists a very large temperature gradi
which results in the temperature exceeding that of the isotro
case, near the top adiabatic wall. As the thermal diffusivity ratio
reduced below unity, the centerline temperature is observed t
higher than the isotropic case everywhere except in a small re
close to the top adiabatic wall. Due to the relatively larger therm

Fig. 3 Effect of permeability ratio and thermal diffusivity ratio
on centerline temperature distribution
206 Õ Vol. 124, FEBRUARY 2002
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diffusivity in the vertical direction, a smaller temperature gradie
exists in the vertical direction such that the temperature falls
low the isotropic value near the top adiabatic wall.

Maximum Temperature. Figure 4 shows the effect of per
meability ratio and thermal diffusivity ratio on non-dimension
maximum temperatureumax. For the entire range of aspect ratio
umax increases with an increase in permeability ratio because
fluid flow channeling along the horizontal walls and also beca
of reduced flow velocity everywhere in the cavity.~Refer to Fig. 1
also!. umax varies linearly with the permeability ratio for the rang
of permeability ratio considered in the present work. WhenK*
→10,umax is observed to approach the pure conduction value.
A>2, umax is observed to increase linearly with thermal diffusi
ity ratio. However, it is evident that the effect of thermal diffusi
ity ratio on umax is not as severe as that of permeability rat
Effect of permeability ratio and thermal diffusivity ratio onumax
presented in Fig. 5 forA51 shows an interesting feature. Thoug
umax increases with an increase in permeability ratio, the variat
is non-linear. However, the variation is linear for higher asp
ratios (A>2) as shown in Fig. 4. For a given permeability rati
there exists a critical value ofl at which umax becomes a mini-
mum. However the difference between the maximum and m
mum is within610.0 percent of the mean value for the range ol
considered in the present study. This critical value ofl increases
with an increase inK* . Existence of a critical value ofl with
respect to the variation of Nusselt number has been reported
lier by Chang and Lin@10# for anisotropic porous medium withou
heat generation.

The maximum temperature can be correlated in terms of as
ratio, Rayleigh number and for the first time, permeability ra
and thermal diffusivity ratio as

umax51.778Ra* 20.325A0.259K* 0.271l0.028 (7)

for the range 13103<Ra* <13104, 2<A<5, 0.1<K* <10.0,
and 0.1<l<10.0. The correlation coefficient and the average
ror for the correlation are 0.998 and63.23 percent respectively
which show the goodness of the fit.

Fig. 4 Effect of permeability ratio and thermal diffusivity ratio
on the maximum temperature for AÐ2
Transactions of the ASME
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Overall Heat Transfer. For the problem considered her
there is no well-defined characteristic temperature difference
express the heat transfer coefficient. However, one can defin
overall Nusselt number based on the mean temperature on
centerline. When the heat transfer coefficient is defined in term
(Tm2Tc), the overall Nusselt number is obtained as Nuav
5havr o /kr51/um . The overall Nusselt number can thus be c
related as

Nuav50.556Ra* 0.396A20.233K* 20.338l0.032, (8)

for the range 13103<Ra* <13104, 2<A<5, 0.1<K* <10.0,
and 0.1<l<10.0. The correlation coefficient and the average
ror for the correlation are 0.998 and63.34 percent respectively
which show the goodness of the fit.

Conclusions
A numerical study has been performed of natural convectio

a cylindrical cavity filled with a heat generating anisotropic p
rous medium. A low permeability ratio (K* ,1) causes channel
ing of the flow along the isothermal vertical wall and a high
flow intensity in the enclosure. A large permeability ratio (K*
.1) causes channeling of the flow along the horizontal adiab
walls and a lower flow intensity in the enclosure. A low therm
diffusivity ratio ~l,1! causes a slightly higher flow intensity i
the enclosure. A large thermal diffusivity ratio~l.1! has little
effect on the flow pattern or flow intensity in the enclosure.
permeability ratio increases maximum cavity temperature
creases, for the entire range of aspect ratio studied. ForA>2,
larger the thermal diffusivity ratio, larger is the maximum cav
temperature. ForA51, there exists a critical value of therma
diffusivity ratio at which the maximum cavity temperature
minimum. This critical value increases with an increase in perm
ability ratio. General correlations for maximum cavity tempe
ture and average Nusselt number are presented in terms of
leigh number, aspect ratio, permeability ratio and therm
diffusivity ratio.

Nomenclature

A 5 aspect ratio,H/r o
g 5 acceleration due to gravity, m/s2

H 5 cylinder height, m

Fig. 5 Effect of permeability ratio and thermal diffusivity ratio
on the maximum temperature for AÄ1.0
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h 5 heat transfer coefficient, W/m2K
K 5 porous medium permeability, m2

K* 5 anisotropic permeability ratio,Kr /Kz

k 5 porous medium effective thermal conductivity, W/m
Nu 5 Nusselt number based on cylinder radius,hro /kr

p 5 pressure, Pa
q- 5 volumetric heat generation rate, W/m3

r 5 radial co-ordinate, m
R 5 dimensionless distance in radial direction,r /r o

r o 5 cylinder radius, m
Ra* 5 Darcy modified Rayleigh number,

gbKrr o(q-r 0
2/2kr)/na r

T 5 temperature, K
u8, v8 5 fluid velocity in ther andz directions, m/s

z 5 axial co-ordinate, m
Z 5 dimensionless distance in the axial direction,z/H

Greek Symbols

a 5 thermal diffusivity, m2/s
b 5 isobaric coefficient of volumetric thermal expansion

1/K
l 5 anisotropic thermal diffusivity ratio,a r /az

u 5 dimensionless temperature, (T2Tc)/(q-r o
2/2kr)

m 5 dynamic viscosity, Ns/m2

n 5 kinematic viscosity, m2/s
r 5 fluid density, kg/m3

c8 5 stream function, m3/s
c 5 dimensionless stream function,c8/a r r o

Subscripts

av 5 average
c 5 cold vertical wall

m 5 averaged along the line of symmetry
max 5 maximum

o 5 line of symmetry (r 50)
r , z 5 radial and axial directions

z 5 axial direction
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Application of Differential Transform
Method to Heat Conduction in
Tapered Fins

Charles W. Bert
School of Aerospace and Mechanical Engineering, The
University of Oklahoma, Norman, OK 73019-1052
e-mail: cbert@ou.edu

This paper analyzes steady-state heat conduction in a triangu
profile fin using a relatively new, exact series method of solut
known as the differential transform method. This method c
verges with only six terms or less for the cases considered
advantage is that, unlike many popular methods, it is an ex
method and yet it does not require the use of Bessel or o
special functions.@DOI: 10.1115/1.1423316#

Keywords: Computational, Finned Surfaces Heat Transfer, T
perature, Heat Conduction

Introduction
Zhou @1# introduced a method, based on Taylor series exp

sion, for solving initial-value problems of electrical circuits. H
named the methoddifferential transformation. Later, Chen and Ho
@2# applied the differential transformation~DT! method to solution
of second-order eigenvalue problems. Recently Malik and D
@3# first applied the DT method to vibration analysis, specifica
the fourth-order system for vibration of prismatic beams.

After completing the present work, the author learned, from o
of the reviewers, of previous work by Yu and Chen@4#. They dealt
with determination of the optimal length for circular fins of rec
angular profile. They considered thermal conductivity varyi
with temperature, heat transfer coefficient varying with radial p
sition and nonlinear conducting-convecting-radiating heat trans
Solution was by a domain version of the differential transform
tion method, although few details were given regarding accur

The present paper considers steady-state heat transfer
triangular-profile fin with constant properties and gives details
application of the method as well as a convergence study.

The Boundary-Value Problem
Let x be the position coordinate along the axis of the fin~nor-

malized by the lengthL! andu dimensionless temperature abo
ambient. The cross-sectional area of the fin varies linearly witx,
measured from the apex. Then the governing differential equa
is the following second-order equation with varying coefficien
~Arpaci, @5#!

x
d2u

dx2 1
du

dx
2m2u50, (1)

whereu is the temperature measured above ambient and nor
ized by the base temperature, and m2 is a fin parameter given by

m25~h11h2!AR/k.

HereAR is the plate aspect ratio~length /depth!, h1 andh2 are the
convective heat transfer coefficients of the top and bottom
faces, andk is the thermal conductivity.

The boundary conditions are no heat flux at the tip

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division January
2001; revision received August 15, 2001. Associate Editor: G. S. Dulikravich.
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x→0

S x
du

dxD50, (2)

and a dimensionless temperature of unity at the base (x51), i.e.,

u~1!51. (3)

Differential Transformation Method
An arbitrary functionf (x) can be expanded in a Taylor serie

about a pointx50 as

f ~x!5(
k50

`
xk

k! Fdku

dxkG
x50

. (4)

The differential transformation off (x) is defined as

F~k!5
1

k! Fdku

dxkG
x50

. (5)

Then the inverse differential transformation is

f ~x!5(
k50

`

xkF~k!. (6)

Before taking the differential transformation of each term in E
~1!, we note that

x→d~k21!5$1 if k51 otherwise 0

dnu

dxn → ~n1k!!

k!
T~n1k!,

whereT(k) is the differential transform~DT! of u(x).

f ~x!u~x!→(
l 50

k

F~ l !T~k2 l !,

whereF(k) is theDT of f (x).
For the first term in Eq.~1!, f (x) is simply x andn52. Thus,

x
d2u

dx2 →(
l 50

k

d~ l 21!~k2 l 11!~k2 l 12!T~k2 l 12!.

For the second term in Eq.~1!,

du

dx
→~k11!T~k11!,

and for the third term,

2m2u~x!→2m2T~k!.

Thus, the transformed version of Eq.~1! is

(
l 50

k

d~ l 21!~k2 l 11!~k2 l 12!T~k2 l 12!

1~k11!T~k11!2m2T~k!50. (7)

The transformed boundary conditions are

(
l 50

k

d~ l 21!~k11!T~k11!50 (8)

(
l 50

k

T~k!51. (9)

Expanding the boundary condition Eq.~8! for variousk values,
one can obtain all theT(k) values as zero which is a trivial solu
tion. However, the solution as given byDT method Eq.~6! auto-
matically satisfies this boundary condition asx→0. In other
words, the physical significance is that asx→0, all the coeffi-
cients ofdu/dx should be finite. As there are no negative powe

2,
2002 by ASME Transactions of the ASME
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7,
of x in Eq. ~6! the coefficientsT(k) are indeed finite and the
boundary condition is automatically satisfied. For the case of
pered fins having both ends of finite thickness, this boundary c
dition is necessary to solve the problem completely.

Successive applications of Eq.~7! yield

k50: T~1!2m2T~0!50 or T~1!5m2T~0!

k51: 2T~2!12T~2!5m2T~1!.
Thus,

T~2!5~m2/4!T~1!5~m4/4!T~0!

k52: 6T~3!13T~3!5m2T~2!.
Thus,

T~3!5~1/9!m2T~2!5~m6/36!T~0!.

Inserting the above expressions forT(0) throughT(3) into Eq.
~9! and solving forT(0) yields

T~0!5
1

11m21~m4/4!1~m6/36!
. (10)

Numerical Results

For m251, Eq. ~10! yields T(0)50.439024, which is only
0.079 percent higher than 0.4386734, the exact Bessel func
solution.

Once the various values ofT(k) are known, the dimensionles
temperature distribution is given by Eq.~6! converted to the no-
tation of the present problem:

u~x!5(
k50

`

xkT~k!. (11)

For the present case, up to third order,

u~x!5T~0!1xT~1!1x2T~2!1x3T~3!.

For the case ofm251, the dimensionless temperature at the m
point (x51/2) is 0.6874993, which is 0.0717 percent higher th
the exact solution. Fin efficiencyh is defined as the ratio of the
actual heat transfer rate through the base of a fin to that of an i
fin having a uniform temperature equal to the base temperatur
the actual fin. Fin efficiency is probably a better measure of
accuracy of the method than the temperature values mentio
above. Form251, theDT method givesh569.5 percent or 0.372
percent lower than the exact value.

Table 1 Root and mid-point temperatures and fin efficiency as
a function of parameter m using only three terms „% error in
parentheses …

Table 2 Exact values and the number of terms required to ob-
tain them, as a function of parameter m
Copyright © 2Journal of Heat Transfer
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Table 1 summarizes the end and mid point temperatures a
with fin efficiency for various values ofm with three terms and
Table 2 gives the number of terms required to converge to
exact solution up to five significant digit accuracy.

Conclusion
The advantage of theDT method over other methods, such

the ordinary and variational heat balance integral method, the
dinary and improved Rayleigh method, and the mean-square e
method @6#, is that theDT method is exact. Nevertheless it
rather straight forward to apply.
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Laminar Mixed Convection Adjacent
to Three-Dimensional
Backward-Facing Step

A. Li and B. F. Armaly
Department of Mechanical and Aerospace Engineering
and Engineering Mechanics, University of
Missouri-Rolla, Rolla, MO 65409

Simulations of three-dimensional laminar buoyancy-assist
mixed convection adjacent to a backward-facing step in a vert
rectangular duct are presented to demonstrate the influence
Grashof number on the distributions of the Nusselt number,
the reverse flow regions that develop adjacent to the duct’s wa
The Reynolds number, and duct’s geometry are kept constant:
flux at the wall downstream from the step is kept uniform but
magnitude varied to cover a Grashof number range of 0–4000;
all the other walls in the duct are kept at adiabatic condition; an
the flow, upstream of the step, is treated as fully developed
isothermal. Increasing the Grashof number results in increas
the Nusselt number; the size of the secondary recirculation fl
region adjacent to the stepped wall; the size of the reverse fl
region adjacent to the sidewall and the flat wall; and the spanw
flow from the sidewall toward the center of the duct. On the ot
hand, the size of the primary recirculation flow region adjacent
the stepped wall decreases and detaches partially from the he
stepped wall as the Grashof number increases. Details are
sented and discussed.@DOI: 10.1115/1.1423909

Keywords: Convection, Finite Volume, Mixed Convection, Se
rated, Three-Dimensional
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Introduction
Separated and reattached flow occurs in many heat-exchan

devices, such as electronic and power generating equipmen
dump combustors. A great deal of mixing of high and low ene
fluid occurs in the separated and reattached flow regions,
impacting significantly the heat transfer performance of these
vices. Studies have been conducted extensively during the
decade, and the backward facing step geometry received mo
the attention@1–3#. The majority of published work dealt with th
two-dimensional isothermal flow behavior, and comparativ
little is published about the three-dimensional non-isotherm
case. Forced convection results have been reported for a duct
an aspect ratio of 16 by Iwai et al.@4#, with an aspect ratio of 12
by Pepper and Carrington@5#, and with an aspect ratio of 8 b
Armaly et al. @6#. The numerical study of Iwai et al.@7# estab-
lished that an aspect ratio greater than 16 is needed to maint
small two-dimensional region near the centerline of the duct w
expansion ratio of 2 at Reynolds number of 250, and for hig
Reynolds number the flow becomes three-dimensional throug
the duct. To the authors’ knowledge the work of Iwai et al.@8# on
the effects of inclination angle on the heat transfer for a duct w
aspect ratio of 16, and the work of Li and Armaly@9# on mixed
convection in a duct with aspect ratio of 8 are the only publish
three-dimensional results that incorporate the buoyancy forc
the analysis.

Model Description and Simulation
Three-dimensional laminar buoyancy-assisting convection fl

in a heated duct with a backward-facing step is numerically sim
lated and the computation domain is shown in Fig. 1. The
stream height of the duct~h! is 0.01 m, its downstream height~H!
is 0.02 m, and its width is~W! is 0.08 m. This geometry provide
a backward facing step height ofS50.01 m, an expansion ratio o
ER5H/(H2S)52, and an aspect ratio ofAR5W/S58. By ex-
ploiting the symmetry of the flow field in the spanwise directio
the width of the computation domain was reduced to half of
actual width of the duct (L50.04 m). The length of the compu
tation domain is 0.02 m and 0.5 m upstream and downstream
the step respectively, i.e.,22<x/S<50. The origin of the coor-

Fig. 1 Schematic of the computation domain
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dinate system is located at the bottom corner of the step as sh
in Fig. 1. The governing equations for laminar buoyancy assis
mixed convection flow~with gravity, g, in the streamwise direc-
tion! with constant properties under steady conditions are form
lated for continuity, momentum and energy conservation. Ther
buoyancy effects are modeled using the Boussinesq approx
tion. The full elliptic three-dimensional coupled governing equ
tions are solved using finite volume method to simulate the th
mal and the flow field~whereT is temperature andu, v, w are
velocity components in coordinate directionx, y, andz as shown
in Fig. 1! in this geometry. Details of the formulation are given b
Li and Armaly@9#. The physical properties are treated as consta
in the simulations and evaluated for air at the inlet temperatur
T0520°C ~i.e., density~r! equals to 1.205 kg/m3, dynamic vis-
cosity ~m! is 1.8131025 kg/m•s, thermal conductivity~k! is
0.0259 W/m•°C, specific heat (Cp) is 1005 J/kg°C, and volumet
ric coefficient of thermal expansion~b! is 0.00341 1/K!. The
boundary conditions are treated as no slip conditions at the s
walls, and adiabatic at all the walls with the exception of t
downstream stepped wall~y/S50.0 m, for 0.0<x/S<50, and all
z! that was treated as having a uniform heat flux (qw
52k]T/]yuy50). The uniform heat flux at the downstream
stepped wall is varied while keeping the flow rate constant~Rey-
nolds number, Re52ru0h/m5200, whereu0 is the average inlet
velocity in the upstream section of the duct! in order to investigate
the effects of the buoyancy force~the Grashof number, Gr
5r2gbqwS4/m2k, and 0.0<Gr/Re2<0.1! on the flow and heat
transfer behavior. Symmetry conditions were imposed at the c
ter width of the duct~z/L51, for all x andy!, and fully developed
conditions were imposed at the outlet~x/S550, for all y and z!
and inlet planes~x/S522, 1<y/S<2, for all z! of the computa-
tion domain.

Hexahedron volume elements are used in the simulations.
convergence criterion required that the scaled residuals be sm
than 1024 for the continuity and the momentum equations a
smaller than 1026 for the energy equation. All of the calculation
were performed on HP Visualine C200 workstations, and the C
time for converged solution is approximately five hours. Detai
descriptions of the CFD code and the solution procedure can
found in the FLUENT manual. The grid was generated to ins
high density close to the walls and the step, where high gradi
are expected, in order to insure the accuracy of the simulat
Grid independence tests were performed for the case with R
nolds number of Re5400, and wall heat flux of qw

521.19 W/m2. Comparisons of the results for the minimum an
maximum temperature on the downstream stepped wall, reatt
ment length at the center of the duct and the minimum reatta
ment length are conducted for different grid densities downstre
of the step, 100(x)320(y)320(z), 125325325, 150330330,
and 180335335, respectively. The results show that for the larg
grid ~180335335!, the differences are less than 1 percent for t
temperature and reattachment length. A grid of 150330330
downstream of the step and a grid of 20315330 upstream of the
step are selected for this simulation.

Results and Discussion
The present study is an extension to the one reported by Arm

et al. @6#, dealing with the forced convection in the same du
geometry. The ‘‘jet like’’ flow that develops near the sidewa
within the separating shear layer, and the reverse flow that de
ops adjacent to the sidewall are the major three-dimensional
features in this geometry. These features also dominate the
and heat transfer behavior in mixed convection. The focus of
study is on examining and quantifying the effects of the buoya
force ~Gr! on the flow and heat transfer characteristics.

Impingement of the ‘‘jet like’’ flow on the stepped wall is re
sponsible for creating a minimum in the spanwise distribution
the reattachment line, along with a maximum in the Nusselt nu
Transactions of the ASME
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er
ber distribution near the sidewall. Spanwise distributions of re
tachment line~as defined by the locations where]u/]yuy50! for
the primary and secondary recirculation flow regions are p
sented in Fig. 2 for different Grashof numbers. The minimum t
occurs in that distribution near the sidewall can be seen clearly
Gr50 and 500. The maximum length of the primary recirculati
flow region occurs at the sidewall and not, as expected, at
center of the duct. As the Grashof number increases, i.e., Gr5500,
the primary reattachment line moves closer to the step, and
secondary reattachment line moves away from the step. T
means that the size of the secondary and the primary recircula
flow regions increase and decrease, respectively, as the Gra
number increases. The figure shows that the primary recircula
flow region is partially lifted away from the heated stepped w
and the secondary recirculation flow region is vented to the m
flow at the center of the duct for Gr51000. The size of that lifted
region increases with increasing Grashof number. The fig
shows that only a small portion of the separating shear-laye
reattached to the stepped wall for the case where the Gra
number is 4000, while the rest of the region that is close to
step is vented directly to the main flow.

The effect of the Grashof number on the size of the reverse fl
region that develops adjacent to the sidewall is shown Figs. 3
4. Results in Fig. 3 represent the linked points~a line! that identify
the locations where the streamwise velocity component~u! is zero
on a plane that is near the sidewall (z/L50.01). Each one of the

Fig. 2 Effects of Grashof number on the distribution of the
reattachment line

Fig. 3 Effects of Grashof number on size of reverse flow re-
gion at a plane zÕLÄ0.01
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lines represents the downstream and the upstream boundari
the reverse flow region that develops adjacent to the sidewall
the downstream boundary the flow reverses its direction and s
flowing upstream toward the step, and at the upstream boun
that flow reverses its direction again to move in the downstre
direction with the main flow. For low Grashof number, Gr,700,
the reverse flow region adjacent to the sidewall develops at
upper corner of the sidewall and that region is separated from
primary recirculation flow region. As the Grashof number i
creases, Gr.700, the reverse flow region that develops adjacen
the sidewall merges with the primary recirculation flow region
shown in Fig. 3. These results also demonstrate that the prim
recirculation flow region is vented to the main flow at the plane
z/L50.01 for Grashof number equals to 4000, but the reve
flow region adjacent to the sidewall remains connected with
primary recirculation flow region at that plane. Results in Fig
represent the linked points~a line! that identify the locations
where the streamwiseu-velocity component is zero on a plan
near the flat wall of the duct aty/S51.99. Each one of these line
represents the downstream and the upstream boundaries o
reverse flow region that develops adjacent to that wall, simila
what was described in Fig. 3. The depth of that region in
spanwise direction extends to approximately 15 percent of
duct’s half width at Gr50, but extends to approximately 40 pe
cent of the duct’s half width at Gr54000.

Due to space limitations, graphical results for the effects of
Grashof number on velocity distributions are not presented in
Note. Results for the streamwiseu-velocity component indicate
that a ‘‘jet like’’ flow develops in the separating shear layer ne
the sidewall and the magnitude of the peak velocity decreases
moves closer to the sidewall with increasing Grashof numb
Results for the transversev-velocity component indicate that it
magnitude is mostly negative due to sudden expansion in ge
etry with its peak increasing in absolute value as the Gras
number increases, and that peak develops at approximately
same height as the step. In the neighborhood of the sidew
however, that trend is reversed and the magnitude of that velo
component decreases in absolute value and becomes positi
the Grashof number increases due to the reverse flow that de
ops in that region. A ‘‘jet like’’ flow develops in the spanwis
distribution of that velocity component near the sidewall, and
magnitude of the peak in these distributions increases with
creasing Grashof numbers. Results for the spanwisew-velocity
component indicate that the flow is moving mostly from the w
toward the center of the duct, but in the corner near the sidew
and the stepped wall, the flow moves toward the sidewall to s
port the reverse flow that develops in that region. That reve
flow region increases in size as the Grashof number increase

Distributions of Nusselt number (Nu5qwS/k(Tw2T0), where
Tw is the wall temperature andT0 is the inlet fluid temperature! on
the heated stepped wall are presented in Fig. 5 for differ
Grashof numbers. The maximum that occurs near the sidewall
be clearly seen in that figure. The development of this peak in
Nusselt number distribution near the sidewall is due to the ‘
like’’ flow that develops in that region. The peak Nusselt numb

Fig. 4 Effects of Grashof number on size of reverse flow re-
gion at a plane y ÕSÄ1.99
FEBRUARY 2002, Vol. 124 Õ 211
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Fig. 5 Effects of Grashof number on the Nusselt number distribution
a

c

f
a

e
t

t

i

h

ions
that
ary
er
er

un-
03.

eri-
uid

n,’’

onic

f
ect-

ver
-

,

occurs in the same general region where the reattachment leng
minimum, and it is downstream from the reattachment line. Re
tachment lines are included in this figure for comparisons of re
tive positions. The maximum in that distribution moves upstre
toward the step and closer to the sidewall as the Grashof num
increases. The maximum Nusselt number increases from 1.8
Gr50, to 2.8 at Gr54000.

Conclusions
Numerical simulations of three-dimensional laminar buoyan

assisting mixed convection flow adjacent to a backward-fac
step in a duct are presented to demonstrate the influence o
Grashof number on the distributions of the Nusselt number,
the reverse flow regions that develop adjacent to the duct’s w
in this geometry. Increasing the Grashof number results in incr
ing the Nusselt number; the size of the secondary recircula
flow region adjacent to the stepped wall; the size of the reve
flow region adjacent to the sidewall and the flat wall; and
spanwise flow from the sidewall toward the center of the duct.
the other hand, the size of the primary recirculation flow reg
adjacent to the stepped wall decreases and detaches partially
the heated stepped wall as Grashof number increases. The
tions of the maximum Nusselt number move upstream toward
step and closer to the sidewall as the Grashof number increa
The ‘‘jet like’’ flow that develops near the sidewall is responsib
for developing a minimum in the spanwise distributions of t
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reattachment length and a maximum in the spanwise distribut
of Nusselt number near the sidewall. The reverse flow region
develops adjacent to the sidewall is not connected to the prim
recirculating flow region for the cases of low Grashof numb
~Gr50.0, and 500! but becomes connected to that region at high
Grashof numbers.
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